• Title/Summary/Keyword: Vorticity field

Search Result 153, Processing Time 0.027 seconds

Experimental Investigation of Two-dimensionality of Flow around the Vertical Fence Submerged in a Turbulent Boundary Layer (난류 경계층에 잠긴 수직벽 주위 유동의 2차원성 연구)

  • Cha, Jae-Eun;Kim, Hyoung-Woo;Kim, Hyoung-Bum
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.1
    • /
    • pp.13-18
    • /
    • 2010
  • An experimental investigation of the flow around a vertical fence was carried out using a PIV velocity field measurement technique. The vertical fence was embedded in a turbulent boundary layer. The instantaneous velocity fields measured at cross-sectional planes reveal complex longitudinal vortices that vary in size and strength, developing from the upstream location. In the instantaneous vorticity and velocity field data, the shear flow separated from the fence top is highly turbulent and shows unsteady flow characteristics. The topography of the ensemble averaged velocity fields, especially the separation bubble formed behind the fence, shows that the spatial distributions of streamwise velocity (U) and vertical (V) are symmetric, the spanwise velocity (W) is skew-symmetric with respect to the central xy-plane(z=0).

The Flow Field Structures of In-lined Double Jet-in-Cross Flow at Low Velocity Ratio (낮은 속도비에서의 직렬 이중 제트-교차흐름의 유동 구조)

  • Lee, Ki-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.415-422
    • /
    • 2015
  • The flow field structures of dual jet-in-cross-flow were examined experimentally for in-lined perforated damage holes configuration using particle image velocimetry. Ensemble averaged in-plane velocity and vorticity data in the jet were determined to study the mean jet structure. Jets are formed by pressure differences between upper and lower airfoil surface. The flow structure of vicinity of the thru holes consist of a vortical structure that wrap around the jets like a horseshoe and develop further downstream through a pair of stream-wise vortices. The shape, size and location of the horseshoe vortex were found to be dependent on the angle of attack. In spite of the existence of battle damage holes, the effect on the control force was insignificant when the damage size was not large enough.

Study on the Measurements of Flow Field around Cambered Otter Board Using Particle Image Velocimetry (PIV를 이용한 만곡형 전개판의 유동장 계측에 관한 연구)

  • 박경현;이주희;현범수;노영학;배재현
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.38 no.1
    • /
    • pp.43-57
    • /
    • 2002
  • This paper introduces an analysis method to predicting the flow characteristic of flow field around otter board In order to develope a high performance model. In this experiment, it is used a numerical analysis of flow field through CFD(Computational Fluid Dynamic), PIV method in which quantitative, qualitative evaluation is possible. In this experiment, it is used PIV method with flow filed image around otter board in order to analysis of flow characteristic. The result compared flow pattern with analysis result through CFD and also measurement result of lift and drag force coefficient carried out in CWC(Circulating Water Channel). The numerical analysis result is matched well with experiment result of PIV in the research and it is able to verify In the physical aspect. The result is as follows ; (1) It was carried out visibility experiment using laser light sheet, and picture analysis through PIV method in order to analysis fluid field of otter-board. As a result, the tendency of qualitative fluid movement only through the fluid particle's flow could be known. (2) Since PIV analysis result is quantitative, this can be seen in velocity vector distributions, instantaneous streamline contour, and average vorticity distributions through various post processing method. As a result, the change of flow field could be confirmed. (3) At angle of attack 24$^{\circ}$ where It Is shown maximum spreading force coefficient, the analysis result of CFD and PIV had very similar flow pattern. In both case, at the otter-board post edge a little boundary layer separation was seen, but, generally they had a good flow (4) As the result of post processing with velocity vector distributions, instantaneous streamline contour and average vorticity distributions by PIV, boundary layer separation phenomenon started to happen from angle of attack 24$^{\circ}$, and from over angle of attack 28$^{\circ}$, it happen at leading edge side with the width enlarged.

Velocity Field Measurement of Flow Around an Axial Fan Using a Phase Averaged 2-Frame PTV Technique (위상평균 PTV 기법을 이용한 축류 홴 주위 유동의 속도장 측정 연구)

  • Choi, Jay-Ho;Kim, Hyoung-Bum;Lee, Sang-Joon;Lee, In-Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.114-123
    • /
    • 2000
  • The flow structure around a rotating axial-fan was experimentally investigated using a phase averaging velocity field measurement technique. The fan blades were divided into 4 different phases, for which 500 velocity fields were acquired for each phase angle with a 2-frame PTV system. Velocity field measurements were also carried out at two planes parallel to the axis of rotation, with offsets toward the radial direction of the fan. For accurate synchronization of the PTV system with the phase of the axial fan, two synchronization circuits were employed with a photo-detector attached to the rotating shaft. The phase averaged velocity fields show periodic variations with respect to the blade phase. The periodic formation of vortices at the blade tip is also observed in vorticity contour plots. Locations of local maximum turbulence intensities in the axial and radial directions are found to be located in an alternating pattern. These experimental results can be used to validate numerical calculations and to understand the flow characteristics of an axial fan.

Aeroelastic stability analysis of a bridge deck with added vanes using a discrete vortex method

  • Taylor, I.;Vezza, M.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.277-290
    • /
    • 2002
  • A two dimensional discrete vortex method (DIVEX) has been developed at the Department of Aerospace Engineering, University of Glasgow, to predict unsteady and incompressible flow fields around closed bodies. The basis of the method is the discretisation of the vorticity field, rather than the velocity field, into a series of vortex particles that are free to move in the flow field that the particles collectively induce. This paper gives a brief description of the numerical implementation of DIVEX and presents the results of calculations on a recent suspension bridge deck section. The results from both the static and flutter analysis of the main deck in isolation are in good agreement with experimental data. A brief study of the effect of flow control vanes on the aeroelastic stability of the bridge is also presented and the results confirm previous analytical and experimental studies. The aeroelastic study is carried out firstly using aerodynamic derivatives extracted from the DIVEX simulations. These results are then assessed further by presenting results from full time-dependent aeroelastic solutions for the original deck and one of the vane cases. In general, the results show good qualitative and quantitative agreement with results from experimental data and demonstrate that DIVEX is a useful design tool in the field of wind engineering.

Velocity Field Measurements of a Vertical Turbulent Buoyant Jet Using a PIV Technique (PIV 기법을 이용한 비등온 부력제트의 유동구조에 관한 연구)

  • Sin, Dae-Sik;Yun, Jeong-Hwan;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.611-618
    • /
    • 2001
  • The flow characteristics of a turbulent buoyant jet were experimentally investigated using a single-frame PIV system. The Reynolds number based on the nozzle exit velocity and nozzle diameter was about Re=5$\times$10$^3$. The instantaneous velocity fields in the streamwise plane passing the jet axis were measured in the near field X/D <11 with and without the temperature gradient. By ensemble averaging the instantaneous velocity fields, the spatial distributions of mean velocity, vorticity, and higher-order statistics up to third order were obtained. The temperature difference of 10$\^{C}$ does not affect a significant influence to the flow structure in the near field, but the total entrainment rate is increased slightly. The entrainment rate shows a linear variation with the streamwise distance in the region after X/D=5.0.

Numerical Calculation of the Far Field Acoustic Pressure from the Unsteady Motion of the Three-dimensional Vortex Filament (삼차원 와선의 비정상 거동에 의한 원거리 음압의 수치해석)

  • Ryu, Ki-Wahn;Lee, Duck-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.942-950
    • /
    • 1997
  • Far field acoustic pressure from the evolution and interaction of three-dimensional vortex filament is calculated numerically. A vortex ring is a typical example of the three-dimensional vortex filament. An elliptic vortex ring emits a strong sound signal due to significant distortion and stretching of the vortec filament. The far field acoustic pressure is linearly dependent on the third time derivatives of the vortex positions. A numerical scheme of high resolution is employed to describe in detail the elliptic vortex ring motions which ar highly nonlinear. Descretized vortex filaments are interpolated by using a parametric blending function to remove a possible numerical instability. The distorted vortex filament, owing to the self-induced and the induced velocity from the other vortex segments, is redistributed at each time step. The accuracy and efficiency of the scheme are validated by comparisons with the analytic solution of circular vortex ring interaction.

On the Viscous Flow Around Breaking Waves Generated by a Submerged Cylinder(Part 3 : Survey of Flow Field Using PIV Technique) (몰수실린더에 의하여 생성되는 쇄파주위 점성유동의 고찰(제3부 : PIV를 이용한 순간유동장 해석))

  • B.S. Hyun;Y.H. Shin;K.S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.2
    • /
    • pp.38-45
    • /
    • 2000
  • A breaking-wave caused by a cylinder moving under the free-surface is studied, which is designed to unveil the interaction between breaker and cylinder using PIV at CWC. The detailed structures of the vortical flow is obtained from the velocity field measured by PIV technique. The vorticity distribution behind the breaker and originated from the breaker. It has been obvious that the vortices from breaker greatly affect the whole wake field at S/D=1. Certainly PIV was confirmed to be a very versatile means to investigate the complex flow fields such as breaking wave.

  • PDF

Flow and Heat Transfer Characteristics due to the Variations of the Angle of Attack at the Vortex Generators located behind a Circular Cylinder (원주 후미에 부착된 와동발생기의 영각 변화에 따른 유동 및 열전달 특성)

  • 하홍영;홍철현;양장식;이기백
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.439-449
    • /
    • 2002
  • Experimental investigations of the flow structure and heat transfer enhancement in a channel with a built-in circular cylinder and a wing-let type vortex generator are presented. Without any vortex generators, relatively low heat transfer takes place in the downstream of the circular cylinder where is a recirculation region with low velocity fluid is formed. However with a wing-let type longitudinal vortex generator in the wake region behind the cylinder, heat transfer in the region can be enhanced. In order to control the strength of longitudinal vortices, the angle of attack of the vortex generators is varied from $20^{circ} to 45^{\circ}$, but spacings between the vortex generations are fixed to be 5 mm. The 3-dimensional mean velocity field downstream of the vortex generator is measured by a five-hole pressure probe, and the hue-capturing method using thermochromatic liquid crystals has been used to provide the local distribution of the heat transfer coefficient. The vorticity field and streamwise velocity contour are obtained from the velocity field. Streamwise distributions of averaged Stanton number on the measurement planes show very similar trends for all the experimental cases($\beta=20^{circ}, 30^{circ} and 45^{\circ}$). Circulation strength and heat transfer coefficient have the maximum values when the angle of attack($\beta$) is $30^{\circ}$.

Characteristics of Tropical Cyclone Activity Influenced by Decadal Variability of SST (해수면 온도의 10년 주기 변동에 영향을 받는 Tropical Cyclone의 특징)

  • Kim, Dong-Hyeok;Kang, In-Sik
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.485-492
    • /
    • 2008
  • This study confirms that a decadal variation of the SST (Sea Surface Temperature) in the WNP (Western North Pacific) has an influence on the genesis and passage ofa Tropical Cyclone. The decadal mode was obtained by calculating the SST anomaly on the domain $150^{\circ}E-190^{\circ}E$, and $5^{\circ}S-5^{\circ}N$. Such decadal variation was subsequently analyzed to confirm that it is a dominant mode in central Pacific region. Next, after classifying the years into relatively positive years and relatively negative years, the characteristics of Tropical Cyclone in each year, such as a genesis and passage frequency, were investigated. Compared to the relatively negative years, during the relatively positive years, the location of Tropical Cyclone genesis was biased toward South-Eastern region, while the characteristics of the cyclone were more distinct during late season of the year trom September to December than in mid season from June to August. Examining the movement passage through the observation of passage fiequency, there was a significant difference between positive year and negative year in their passages at a 90% confidence level. Moreover, the number of Tropical Cyclone, maximum wind, and life time also showed higher values in positive years than in negative years. These features were confirmed by examining the 850hPa cyclonic flow field, vorticity field, and vertical wind shear field, all of which contribute to the genesis of a Tropical Cyclone.