• Title/Summary/Keyword: Vorticity field

Search Result 153, Processing Time 0.035 seconds

On the Variation of the Boundary Layer as Hull Surface Roughness (선체 표면 거칠기가 경계층 변화에 미치는 영향)

  • Gim, Ok-Sok;Oh, Woo-Jun;Shon, Chang-Bae;Lee, Gyoung-Woo
    • Journal of Navigation and Port Research
    • /
    • v.34 no.6
    • /
    • pp.429-434
    • /
    • 2010
  • The experimental study of the hull surface roughness on a developing turbulent boundary layer which exposed to a variety of operating environments were investigated by performing particle image velocimetry(PIV) in a circulating water channel. The Reynolds number based on the width of roughness was about Re=1000. the roughness elements used were periodically arranged two-dimensionally. the flow visualization, time-mean velocity fields and vorticity fields to measure the flow characteristics were obtained. The investigation shows that the vortex generation and its progress inside the walls. And the center of the vortex was located at the middle of the height of the surface roughness.

Large-Scale Vortical Structures in The Developing Plane Mixing Layer Using LES

  • Seo, Taewon;Kim, Yeung-Chan;Keum, Kihyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.12-19
    • /
    • 2001
  • Study of turbulent mixing layers has been a popular subject from the point of view of both practical application and phenomenological importance in engineering field. Turbulent mixing layers can be applied in many fields where rapid transition to turbulence is desirable in order to prevent boundary layer separation or to enhance mixing. The ability to control mixing, structure and growth of the shear flow would obviously have a considerable impact on many engineering applications. In addition to practical applications, free shear flows are one of the simplest flows to understand the fundamental mechanism in the transition process to turbulence. After the discovery of large-scale vortical structure in free shear flows many researchers have investigated the physical mechanism of generation and dissipation processes of the vortical structure. This study investigated the role of the large-scale vortical structures in the turbulent mixing layer using LES(Large-Eddy Simulation). The result shows that the pairing interaction of the vortical structure plays an important role in the growth rate of a mixing layer. It is found that the turbulence quantities depend strongly on the velocity ratio. It is also found that the vorticity in the high-velocity-side can extract energy from the mean flow, while the vorticity in the low-velocity-side lose energy by the viscous dissipation. Finally the results suggest the guideline to obtain the desired flow by control of the velocity ratio.

  • PDF

Study on the Vortex Shedding Phenomena Near Free Surface (자유수면 근처에서의 보오텍스 방출 현상에 관한 고찰)

  • Seok-Won Hong;Pan-Mook Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.118-131
    • /
    • 1991
  • The effects of free surface on vortex shedding phenomena around a bluff body were studied by both numerical simulation and flow visualization experiments. A vortex method, which approximates the vorticity field as the sum of discrete vortices; was used for the numerical simulation. Flow visualization experiments were performed in the KRISO cavitation tunnel. Hydrogen bubble was used as illumination material. Free surface elevation was also measured during experiments. The hydrodynamic drag and lift were predicted by numerical simulation. The predicted period of vortex shedding was compared with the results of experiments.

  • PDF

Visualization of Unstable Vortical Structure in a Propeller Wake Affected by Simulated Hull Wake (재현된 반류의 영향을 받는 프로펠러 후류 내 불안정한 날개끝 보오텍스 구조에 대한 정량적 가시화)

  • Kim, Kyung-Youl;Paik, Bu-Geun;Ahn, Jong-Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.620-630
    • /
    • 2008
  • The characteristics of complicated propeller wake influenced by hull wake are investigated by using a two-frame PIV (Particle Image Velocimetry) technique. As the propeller is significantly affected by the hull wake in a real marine vessel, the measurements of propeller wake under the hull wake would be certainly necessary for more reliable validation and the prediction of numerical simulation with wake modeling. Velocity field measurements have been conducted in a medium-size cavitation tunnel with a hull wake. Generally, the hull wake generated by the boundary layer of ship's hull produces the different loading distribution on the propeller blade in both upper and lower propeller planes. The difference of the propeller wake behaviors caused by the hull wake is discussed in terms of axial velocity, vorticity and turbulence kinetic energy distribution in the present study.

Computation of unsteady wind loading on bluff bodies using a discrete vortex method

  • Taylor, I.J.;Vezza, M.
    • Wind and Structures
    • /
    • v.2 no.4
    • /
    • pp.285-303
    • /
    • 1999
  • A discrete vortex method (DVM) has been developed at the Department of Aerospace Engineering, University of Glasgow, to predict unsteady, incompressible, separated flows around closed bodies. The basis of the method is the discretisation of the vorticity field, rather than the velocity field, into a series of vortex particles that are free to move in the flow. This paper gives a brief description of the method and presents the results of calculations on static and transversely oscillating square section cylinders. The results demonstrate that the method successfully predicts the character of the flow field at different angles of incidence for the static case. Vortex lock-in around the resonance point is successfully captured in the oscillatory cases. It is concluded that the vortex method results show good agreement, both qualitatively and quantitatively, with results from various experimental data.

Measurement of Flow Field through a Staggered Tube Bundle using Particle Image Velocimetry (PIV기법에 의한 엇갈린 관군 배열 내부의 유동장 측정)

  • 김경천;최득관;박재동
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.7
    • /
    • pp.595-601
    • /
    • 2001
  • We applied PIV method to obtain instantaneous and ensemble averaged velocity fields from the first row to the fifth row of a staggered tube bundle. The Reynolds number based on the tube diameter and the maximum velocity was set to be 4,000. Remarkably different natures are observed in the developing bundle flow. Such differences are depicted in the mean recirculating bubble length and the vorticity distributions. The jet-like flow seems to be a dominant feature after the second row and usually skew. However, the ensemble averaged fields show symmetric profiles and the flow characteristics between the third and fourth measuring planes are not so different. comparison between the PIV data and the RANS simulation yields severe disagreement in spite of the same Reynolds number. It can be explained that the distinct jet-like unsteady motions are not to be accounted in th steady numerical analysis.

  • PDF

Flow Field Analysis of Smoke in a Rectangular Tunnel

  • Lee, Yong-Ho;Park, Sang-Kyoo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.679-685
    • /
    • 2009
  • In order to simulate a smoke or poisonous gas emergency in a rectangular tunnel and to investigate a better way to exhaust the smoke, the characteristics of smoke flow have been analyzed using flow field data acquired by Particle Image Velocimetry(PIV). Olive oil has been used as tracer particles with the kinematic viscosity of air, $1.51{\times}10^{-5}\;m^2/s$. The investigation has done in the range of Reynolds number of 1600 to 5333 due to the inlet velocities of 0.3 m/s to 1 m/s respectively. The average velocity vector and instantaneous kinematic energy fields with respect to the three different Reynolds numbers are comparatively discussed by the Flow Manager. In general, the smoke flow becomes more disorderly and turbulent with the increase of Reynolds number. Kinematic energy in the measured region increases with the increase of Reynolds number while decreasing at the leeward direction about the outlet region.

The Near Field Structure of Initially Asymmetic Jets (비대칭분류의 노즐출구영역에서의 난류유동장 해석)

  • Kim, K.H.;Shin, J.K.;Lee, H.Y.
    • Journal of ILASS-Korea
    • /
    • v.4 no.4
    • /
    • pp.38-45
    • /
    • 1999
  • The near field structure of round turbulent jets with initially asymmetric velocity distribution is investigated experimentally. Experiments were carried out using a constant temperature hot-wire anemometry system to measure streamwise velocity in the jets. The measurements were undertaken across the jet at various streamwise stations in a range starting from the jet exit plane and up to a downstream location of twelve diameters. The experimental results include the distribution of mean and instantaneous velocities, vorticity field, turbulence intensity, and the Reynolds shear stress. The asymmetry of the jet exit plane was obtained by using circular cross-section pipes with a bend at the upstream of the exit. Three pipes were used for this study: A straight pipe, 90 and 160 degree-bended pipes. Therefore, at the upstream of the pipe exit, the secondary flow through the bend and the mean streamwise velocity distribution could be controlled by changing the curvature of pipes.

  • PDF

Numerical Prediction of Contaminant Dispersion within the Laminar Flow Field using FDM (FDM을 이용한 층유유동장내에서 오염물질확산에 관한 연구)

  • 김양술
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.2
    • /
    • pp.56-63
    • /
    • 1995
  • A simulation of contaminant dispersion in a water reservoir has been done using 2-D finite difference method(FDM). The steady state velocity field of the reservoir was computed using stream function-vorticity formulation of Wavier-Stokes equation and continuity equation. Based on the computed steady state velocity field, the transient convective diffusion equation of the contaminant dispersion was computed. For the 1m$\times$1m reservoir model with inlet and outlet attached, it was shown that the center of circulation located toward right. For the numerical values of v =0.01($\textrm{cm}^2$/s) and D=0.6($\textrm{cm}^2$/s) and the flow of 50($\textrm{cm}^3$/s ), it was determined that the outflow had to be shut down in 18 seconds to prevent from severe pollution. Also the required time was computed to be 6 seconds for the inflow of 100 ($\textrm{cm}^3$/s). The result of this study is considered, hopefully, to be useful for the design of the water reservoir systems that are the subjects to various contamination.

  • PDF

Characteristic Study on Effect of the Vent Mixer to Supersonic Fuel-Air Mixing with Stereoscopic-PIV Method (3차원 PIV 기법을 사용한 벤트혼합기가 초음속 연료-공기 혼합에 미치는 특성 연구)

  • Kim, Chae-Hyoung;Jeung, In-Seuck;Choi, Byung-Il;Kouchi, Toshinori;Masuya, Goro
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.4
    • /
    • pp.50-56
    • /
    • 2012
  • Vent mixer can provide main flow directly into a recirculation region downstream of the mixer to enhance fuel-air mixing efficiency. Based on experimental results of three-dimensional velocity, vorticity and turbulent kinetic energy obtained by a stereoscopic PIV method, the performance of the vent mixer was compared with that of the step mixer which was used as a basic model. Thick shear layers of the vent mixer induced the increase of the penetration height. The turbulent kinetic energy mainly distributed along a boundary layer between the main flow and the jet plume. This turbulent field activates mass transfer in a mixing region, leading to the mixing enhancement.