• 제목/요약/키워드: Vortical Flow

검색결과 228건 처리시간 0.023초

수직원관형 흡수기의 흡수과정에 미치는 비흡수가스의 영향 (Effect of a non-absorbable gag on the absorption process in a vortical tube absorber)

  • 허기준;정은수;정시영
    • 설비공학논문집
    • /
    • 제10권4호
    • /
    • pp.456-465
    • /
    • 1998
  • Effect of a non-absorbable gas on the absorption process in a vertical tube absorber was investigated numerically. The water vapor mined with air as the non-absorbable gas is absorbed into LiBr/water solution film. The flow is assumed to be laminar and fully developed in both liquid and gas phases. The diffusion and energy equations were solved in both phases to give the temperature and concentrations, from which heat and mass fluxes were determined. It was shown that the local absorption rate decreases as the mass fraction of air in water vapor increases. The vapor pressure of water at the liquid-vapor interface reduces significantly since the non-absorbable gas is accumulated near the interface. The effect of non-absorbable gases on absorption rate becomes larger as the mass flow rate of the vapor decreases. For small amount of non-absorbable gases the total absorption rate of water vapor increases as the mass flow rate of the vapor decreases. Total absorption rate increases as the mass flow rate of the vapor increases for large concentration of non-absorbables at the inlet of an absorber.

  • PDF

열성층유동장에 놓인 원주후류의 특성에 대한 연구(2)(Part 2. 성층후류의 난류유동특성) (A Study on the Characteristics of Cylinder Wake Placed in Thermally Stratified Flow(II)(Par II. Turbulent Characteristics of Stratified Wake))

  • 김경천;정양범;강동구
    • 대한기계학회논문집
    • /
    • 제18권5호
    • /
    • pp.1322-1329
    • /
    • 1994
  • The effect of thermal stratification on the stratified flow past a circular cylinder was examined in a wind tunnel. Turbulent intensities, the rms values of temperature and turbulent convective heat flux as well as the velocity and temperature profiles in the cylinder wake with a strong thermal gradient of $200^{\circ}C/m$ were measured by using a hot-wire and cold-wire combination probe. It is found that the temperature field affects as an active contaminant, so that the vertical growth of vortical structure is suppressed and the strouhal number decreases with increasing the extent of stratification. And also, the wake structure can not sustain their symmetricity about the wake centerline and vertical turbulent motion dissipates faster than that of the neutral case when such a strong thermal gradient is superimposed. It is evident that the turbulent mixing in the upper half section is stronger than that of the lower of the wake in a stably stratified flow because the turbulent intensities and convective heat flux in the upper half section are larger than those of the lower half of the wake.

발전소 굴뚝에서의 입자 분산에 대한 수치해석 (Numerical study of particle dispersion from a power plant chimney)

  • 심정보;유동현
    • 한국입자에어로졸학회지
    • /
    • 제13권4호
    • /
    • pp.173-182
    • /
    • 2017
  • An Eulerian-Lagrangin approach is used to compute particle dispersion from a power plant chimney. For air flow, three-dimensional incompressible filtered Navier-Stokes equations are solved with a subgrid-scale model by integrating the Newton's equation, while the dispersed phase is solved in a Lagrangian framework. The velocity ratios between crossflow and a jet of 0.455 and 0.727 are considered. Flow fields and particle distribution of both cases are evaluated and compared. When the velocity ratio is 0.455, it demonstrates a Kelvin-Helmholtz vortex structure above the chimney caused by the interaction between crossflow and a jet, whereas the other case shows flow structures at the top of the chimney collapsed by fast crossflow. Also, complex wake structures cause different particle distributions behind the chimney. The case with the velocity ratio of 0.727 demonstrates strong particle concentration at the vortical region, whereas the case with the velocity ratio of 0.455 shows more dispersive particle distribution. The simulation result shows similar tendency to the experimental result.

진동하는 원형주상체 주위의 유동에 관한 PIV를 이용한 실험적 연구 (Experimental Investigation of the flow around an Oscillating Circular Cylinder by Using a PIV System)

  • 송무석;이상대
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제6권1호
    • /
    • pp.60-67
    • /
    • 2003
  • 원형주상체가 진동하는 경우 Keulegen-Carpenter수를 10에서 30까지 변화시키며 이 때에 유기되는 유체력을 계측하고 전유동계측시스템을 (Particle Image Velocimetry) 개발하여 연관된 유동장을 분석하였다. 개발된 PIV 시스템은 고속 유동장 이미지를 홀수와 짝수의 주사선 이미지로 분리하는 방식을 시도하여 하나의 이미지로부터 속도추정이 가능하도록 하였다. KC수에 따른 실린더 주위의 유동을 "traverse street", "single pairing" 그리고 "double pairing"으로 관찰하였고 각 경우 박리되는 보오텍스의 형태에 따라 미세한 항력과 양력의 변화를 수반하는데 이들의 관계를 위상차와 보오텍스 박리의 형태 변화로 설명하였다.

  • PDF

균일한 열유속에서의 수직동관내의 강제대류 열전달에 관한 연구 (A study on the forced convection heat transfer in the vertical copper tube at uniform wall heat flux)

  • 백고길;차지영;서정윤
    • 대한설비공학회지:설비저널
    • /
    • 제8권4호
    • /
    • pp.213-220
    • /
    • 1979
  • A number of methods has been developed for calculation of heat transfer in the vertical round tube under conditions of forced convection with uniform heat flux at wall. I would like to express hereby one of applications of this study in the design of heat exchanger instruments for water flow at $15.8^{\circ}C(p_r=8)$ used frequently in our daily life. Also all the results are investigated for forced convective heat transfer in the case of heated water-flow at uniform wall heat flux in the vortical round copper tube, where the ratio of length to diameter will be 44. They are well in agreement with Gratz and Kraussold equation respectively in laminar and transition flow range. In turbulent flow in the range from Re=10,000 to 65,000, the experimental formula Is show as follows ; Nu=0.023 $R_e^{0.814}\;P_r^{0.4}$. And this is agreed with Dittus - Boelter equation when Reynolds number exponent increases from 0.80 to 0.814.

  • PDF

입구 경계층 두께가 축류 압축기 내부 유동에 미치는 영향 (I) - 허브 코너 실속 및 익단 누설 유동 - (Effects of the Inlet Boundary Layer Thickness on the Flow in an Axial Compressor (I) - Hub Corner Stall and Tip Leakage Flow -)

  • 최민석;박준영;백제현
    • 대한기계학회논문집B
    • /
    • 제29권8호
    • /
    • pp.948-955
    • /
    • 2005
  • A three-dimensional computation was conducted to understand effects of the inlet boundary layer thickness on the internal flow in a low-speed axial compressor operating at the design condition($\phi=85\%$) and near stall condition($\phi=65\%$). At the design condition, the flows in the axial compressor show, independent of the inlet boundary layer thickness, similar characteristics such as the pressure distribution, size of the hub comer-stall, tip leakage flow trajectory, limiting streamlines on the blade suction surface, etc. However, as the load is increased, the hub corner-stall grows to make a large separation region at the junction of the hub and suction surface for the inlet condition with thick boundary layers at the hub and casing. Moreover, the tip leakage flow is more vortical than that observed in case of the thin inlet boundary layer and has the critical point where the trajectory of the tip leakage flow is abruptly turned into the downstream. For the inlet condition with thin boundary layers, the hub corner-stall is diminished so it is indistinguishable from the wake. The tip leakage flow leans to the leading edge more than at the design condition but has no critical point. In addition to these, the severe reverse flow, induced by both boundary layer on the blade surface and the tip leakage flow, can be found to act as the blockage of flows near the casing, resulting in heavy loss.

Reynolds and froude number effect on the flow past an interface-piercing circular cylinder

  • Koo, Bonguk;Yang, Jianming;Yeon, Seong Mo;Stern, Frederick
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권3호
    • /
    • pp.529-561
    • /
    • 2014
  • The two-phase turbulent flow past an interface-piercing circular cylinder is studied using a high-fidelity orthogonal curvilinear grid solver with a Lagrangian dynamic subgrid-scale model for large-eddy simulation and a coupled level set and volume of fluid method for air-water interface tracking. The simulations cover the sub-critical and critical and post critical regimes of the Reynolds and sub and super-critical Froude numbers in order to investigate the effect of both dimensionless parameters on the flow. Significant changes in flow features near the air-water interface were observed as the Reynolds number was increased from the sub-critical to the critical regime. The interface makes the separation point near the interface much delayed for all Reynolds numbers. The separation region at intermediate depths is remarkably reduced for the critical Reynolds number regime. The deep flow resembles the single-phase turbulent flow past a circular cylinder, but includes the effect of the free-surface and the limited span length for sub-critical Reynolds numbers. At different Froude numbers, the air-water interface exhibits significantly changed structures, including breaking bow waves with splashes and bubbles at high Froude numbers. Instantaneous and mean flow features such as interface structures, vortex shedding, Reynolds stresses, and vorticity transport are also analyzed. The results are compared with reference experimental data available in the literature. The deep flow is also compared with the single-phase turbulent flow past a circular cylinder in the similar ranges of Reynolds numbers. Discussion is provided concerning the limitations of the current simulations and available experimental data along with future research.

후향 계단 주위 난류 박리 유동에 대한 비정상 후류의 영향 (Influence of Unsteady Wake on Turbulent Separated Flows over a Backward-Facing Step)

  • 전세종;성형진
    • 대한기계학회논문집B
    • /
    • 제27권12호
    • /
    • pp.1708-1715
    • /
    • 2003
  • An experimental study was made of turbulent separated and reattaching flow over a backward-facing step, where unsteady wake was generated by a spoked-wheel type wake generator with cylindrical rods in front of the separated flow. The influence of unsteady wake was scrutinized in terms of the rotating speed of the wake generator (0$\leq$S $t_{H}$$\leq$0.4). A conditional averaging technique in corporation with SBF was employed to elucidate the influence of the unsteady wake on the large-scale vortical structures of the separated flow. Special attention was made during two-dimensional measurements of wall-pressure with or without unsteady wake. The wall-pressure fluctuations were used to predict dipole sound source by Curie's integral formula. It was found that the reduction of the dipole sound source was due to the reduction of turbulent kinetic energy by unsteady wake in the recirculation region.n.

스테레오 PIV 기법에 의한 임펠러 와류유동의 3차원 구조측정 (Identification on the Three-Dimensional Vortical Structures of Impeller Flow by a Multi-Plane Stereoscopic PIV Method)

  • 윤상열;김경천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.690-695
    • /
    • 2001
  • The three-dimensional spatial structures of impeller flow created by a six bladed Rushton turbine have identified based on the volumetric velocity information from multi-plane stereoscopic PIV measurements. A total of 10 planes with 2 mm space with a 50 mm by 64 mm size of the field of view were targeted. To reduce the depth of focus, we adopted an angle offset configuration which satisfied the Scheimpflug condition. The distortion compensation procedure was utilized during the in situ calibration. Phase-locked instantaneous data were ensemble averaged and interpolated in order to obtain mean 3-D, volumetric velocity fields on a 60 degree sector of a cylindrical ring volume enclosing the turbine blade. Using the equi-vorticity surface rendering, the spatial structure of the trailing vortices was clearly demonstrated. Detail flow characteristics of the radial jet reported in previous studies of mixer flows were easily identified.

  • PDF

저항감소를 위한 물체후방의 형상설계에 관한 LES 해석 (Large Eddy Simulations on the Configuration Design of Afterbodies for Drag Reduction)

  • 박종천;강대환;전호환
    • 한국해양공학회지
    • /
    • 제17권5호
    • /
    • pp.1-10
    • /
    • 2003
  • When a body with slant angle behind its shoulder is moving at a high speed, the turbulent motion around the afterbody is generally associated with the flow separation, and determines the normal component of the drag. By changing the slant angle of the afterbody, the drag coefficients can be changed, drastically. Understanding and controlling the turbulent separated flows has significant importance for the design of optimal configuration of the moving bodies. In this paper, a new Large Eddy Simulation technique has been developed to investigate turbulent vortical motions around the afterbodies, using slant angle. By understanding the structure of the turbulent flow around the body, the new configuration of afterbodies is designed to reduce the drag of body, and the nonlinear effects, due to the interaction between the body configuration and the turbulent separated flows, are investigated by use of the developed LES technique.