• Title/Summary/Keyword: Vortex-shedding

Search Result 528, Processing Time 0.027 seconds

A Study on Combustion Instability Characteristics of Hybrid Rocket using Liquefying Solid Fuel (용융성 고체 연료를 사용한 하이브리드 로켓의 연소 불안정 특성 연구)

  • Kim, Soo-Jong;Kim, Hak-Chul;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.469-473
    • /
    • 2010
  • In this study, combustion tests using liquefying fuels with fast regression rate were performed. The chamber pressure oscillation was analyzed and hazards of combustion instabilities were examined. In case of Liquefying fuel with fast regression rate, the amplitude of chamber pressure oscillation was increased compared to the polymeric fuels. However, the critical combustion instability can hardly occur in liquefying fuel. This is because the rapid change of inner chamber diameter limits the amplification of chamber pressure oscillation. The chamber pressure oscillation due to the large increase of fuel production and the vortex shedding in pre-chamber violently occurs during combustion using single-port axial injector.

  • PDF

A linear model for structures with Tuned Mass Dampers

  • Ricciardelli, Francesco
    • Wind and Structures
    • /
    • v.2 no.3
    • /
    • pp.151-171
    • /
    • 1999
  • In its 90 years of life, the Tuned Mass Damper have found application in many fields of engineering as a vibration reducing device. The evolution of the theory of TMDs is briefly outlined in the paper. A generalised mathematical linear model for the analysis of the response of line-like structures with TMDs is presented. The system matrices of the system including the TMDs are written in the state space as a function of the mean wind speed. The stability of the system can be analysed and the Power Spectral Density Function of any response parameter calculated, taking into account an arbitrary number of modes of vibration as well as an arbitrary number of TMDs, for any given PSDF of the excitation. The procedure can be used to optimise the number, position and mechanical properties of the damping devices, with respect to any response parameter. Due to the stationarity of the excitation, the method is well suited to structures subjected to the wind action. In particular the procedure allows the calculation of the onset galloping wind speed and the response to buffeting, and a linearisation of the aeroelastic behaviour allows its use also for the evaluation of the response to vortex shedding. Finally three examples illustrate the suggested procedure.

Wind loading on trees integrated with a building envelope

  • Aly, Aly Mousaad;Fossati, Fabio;Muggiasca, Sara;Argentini, Tommaso;Bitsuamlak, Girma;Franchi, Alberto;Longarini, Nicola;Crespi, Pietro;Chowdhury, Arindam Gan
    • Wind and Structures
    • /
    • v.17 no.1
    • /
    • pp.69-85
    • /
    • 2013
  • With the sustainability movement, vegetated building envelopes are gaining more popularity. This requires special wind effect investigations, both from sustainability and resiliency perspectives. The current paper focuses on wind load estimation on small- and full-scale trees used as part of green roofs and balconies. Small-scale wind load assessment was carried out using a wind tunnel testing in a global-effect study to understand the interference effects from surrounding structures. Full-scale trees were investigated at a large open-jet facility in a local-effect study to account for the wind-tree interaction. The effect of Reynolds number combined with shape change on the overall loads measured at the base of the trees (near the roots) has been investigated by testing at different model-scales and wind speeds. In addition, high-speed tests were conducted to examine the security of the trees in soil and to assess the effectiveness of a proposed structural mitigation system. Results of the current research show that at relatively high wind speeds the load coefficients tend to be reduced, limiting the wind loads on trees. No resonance or vortex shedding was visually observed.

Interaction between Turbulent Boundary Layer and Wake Behind an Elliptic Cylinder at Incidence (앙각을 가진 타원형 실린더 후류와 평판경계층의 상호작용에 대한 연구)

  • Choi, Jae-Ho;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.976-983
    • /
    • 2000
  • The flow characteristics around an elliptic cylinder with axis ratio of AR=2 located near a flat plate were investigated experimentally to study the interaction between the cylinder wake and the turbulent boundary layer. The pressure distributions on the cylinder surface and on the flat plate were measured with varying the angle of attack of the cylinder. In addition, the velocity profiles of wake behind the cylinder were measured using a hot-wire anemometry As the angle of attack increases, the location of peak pressure on the windward and leeward surfaces of the cylinder moves toward the rear and front of the cylinder, respectively. At positive angles of attack, the position of the minimum pressure on the flat plate surface is moved downstream, but it is moved upstream at negative angles of attack. With increasing the angle of attack, the vortex shedding frequency is gradually decreased and the critical angle of attack exists in terms of the gap ratio. By installing the elliptic cylinder at negative angle of attack, the turbulent boundary layer over the flat plate is disturbed more than that at positive incidence. This may be attributed to the shift of separation point on the lower surface of the cylinder due to the presence of a ground plate nearby.

Wind tunnel model studies to predict the action of wind on the projected 558 m Jakarta Tower

  • Isyumov, N.;Case, P.C.;Ho, T.C.E.;Soegiarso, R.
    • Wind and Structures
    • /
    • v.4 no.4
    • /
    • pp.299-314
    • /
    • 2001
  • A study of wind effects was carried out at the Boundary Layer Wind Tunnel Laboratory (BLWTL) for the projected 558-m high free-standing telecommunication and observation tower for Jakarta, Indonesia. The objectives were to assist the designers with various aspects of wind action, including the overall structural loads and responses of the Tower shaft and the antenna superstructure, the local wind pressures on components of the exterior envelope, and winds in pedestrian areas. The designers of the Tower are the East China Architectural Design Institute (ECADI) and PT Menara Jakarta, Indonesia. Unfortunately, the project is halted due to the financial uncertainties in Indonesia. At the time of the stoppage, pile driving had been completed and slip forming of the concrete shaft of the Tower had begun. When completed, the Tower will exceed the height of the CN-Tower in Toronto, Canada by some 5 m.

A Numerical and Experimental Study on Dynamics of A Towed Low-Tension Cable

  • Jung, D.H.;Park, H.I.;Koterayama, W.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.191-196
    • /
    • 2002
  • The paper presents a numerical and experimental investigation on dynamic behaviors of a towed low tension cable. In the numerical study, an implicit finite difference algorithm is employed for three-dimensional cable equations. Fluid and geometric non-linearity and bending stiffness are considered and solved by Newton-Raphson iteration. Block tri-diagonal matrix method is applied for the fast calculation of the huge size of matrices. In order to verify the numerical results and to see real physical phenomena, an experiment is carried out for a 6m cable in a deep and long towing tank. The cable is towed in two different ways; one is towed at a constant speed and the other is towed at a constant speed with top end horizontal oscillations. Cable tension and shear forces are measured at the top end. Numerical and experimental results are compared with good agreements in most cases but with some differences in a few cases. The differences are due to drag coefficients caused by vortex shedding. In the numerical modeling, non-uniform element length needs to be employed to cope with the sharp variation of tension and shear forces at near top end.

  • PDF

The Channel Wall Confinement Effect on Periodic Cryogenic Cavitation from the Plano-convex Foil

  • Ito, Yutaka;Nagayama, Tsukasa;Yamauchi, Hiroshi;Nagasaki, Takao
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.383-390
    • /
    • 2008
  • Flow pattern of cavitation around a plano-convex foil, whose shape is similar to the inducer impeller of the turbo-pumps in the liquid fuel rocket engine, was observed by using a cryogenic cavitation tunnel of blowdown type for visualization. Working fluids were liquid nitrogen and hot water. The parameter range to be varied was between 20 and 60mm for channel width, 20 and 60mm for foil chord, -1.8 and 13.2 for cavitation number, 3.7 and 19.5m/sec for averaged inlet velocity, $8.5{\times}10^4$ and $1.5{\times}10^6$ for Reynolds number, -8 and $8^{\circ}$ for angle of attack, respectively. Especially at positive angle of attack, namely, convex surface being downstream, the whole cavity or a part of the cavity on the foil surface departs periodically. Periodic cavitation occurs only in case of smaller cavitation size than twice foil chord. Cavitation thickness and length in 20mm wide channel are larger than those in 60mm due to the wall confinement effect. Therefore, periodic cavitation in 60mm wide channel easily occurs than that in 20mm. These results suggest that the periodic cavitation is controlled by not only the hydrodynamic effect of vortex shedding but also the channel wall confinement effect.

  • PDF

A Study on Flame Dynamics and Combustion Instability Stabilized with a V-gutter Type Flameholder in a model ramjet combustor (V-gutter 형 보염기를 장착한 모델 램제트 연소기의 화염 특성 및 연소 불안정 연구)

  • Song, Jin-Kwan;Hwang, Jeong-Jae;Song, Jae-Cheon;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.447-448
    • /
    • 2008
  • The goal of this study is to find flame dynamic behavior using a transverse fuel injection in a model combustor, and is to investigate main causes of unstable combustion in a liquid-fueled combustor. For transverse fuel injection into air cross flow, spray result shows similar tendency with Wu et al.[1998] until spray arrives at flame-holder. However, passing through flame-holder, fuel inflow into recirculation region of flameholder is not sufficient so it makes large difference between shear flame and recirculation flame behind flameholder. In combustion tests, the stable flame shows a kind of shear flames and low peaks of dynamic pressure frequencies. On the other hand, unstable flame shows periodic detached flame in recirculation zone and a strong peak of dynamic pressure frequency. The instability frequency is highly affected by influx air velocity, air temperature, equivalence ratio and wake or vortex shedding frequency behind the flameholder.

  • PDF

Wind-induced coupled translational-torsional motion of tall buildings

  • Thepmongkorn, S.;Kwok, K.C.S.
    • Wind and Structures
    • /
    • v.1 no.1
    • /
    • pp.43-57
    • /
    • 1998
  • A three-degree-of-freedom base hinged assembly (BHA) for aeroelastic model tests of tall building was developed. The integral parts of a BHA, which consists of two perpendicular plane frames and a flexural pivot, enable this modeling technique to independently simulate building translational and torsional degree-of-freedom. A program of wind tunnel aeroelastic model tests of the CAARC standard tall building was conducted with emphasis on the effect of (a) torsional motion, (b) cross-wind/torsional frequency ratio and (c) the presence of an eccentricity between center of mass and center of stiffness on wind-induced response characteristics. The experimental results highlight the significant effect of coupled translational-torsional motion and the effect of eccentricity between center of mass and center of stiffness on the resultant rms acceleration responses in both along-wind and cross-wind directions especially at operating reduced wind velocities close to a critical value of 10. In addition, it was sound that the vortex shedding process remains the main excitation mechanism in cross-wind direction even in case of tall buildings with coupled translational-torsional motion and with eccentricity.

Numerical modelling for evaluating the TMD performance in an industrial chimney

  • Iban, A.L.;Brownjohn, J.M.W.;Belver, A.V.;Lopez-Reyes, P.M.;Koo, K.
    • Wind and Structures
    • /
    • v.17 no.3
    • /
    • pp.263-274
    • /
    • 2013
  • A numerical technique for fluid-structure interaction, which is based on the finite element method (FEM) and computational fluid dynamics (CFD), was developed for application to an industrial chimney equipped with a pendulum tuned mass damper (TMD). In order to solve the structural problem, a one-dimensional beam model (Navier-Bernoulli) was considered and, for the dynamical problem, the standard second-order Newmark method was used. Navier-Stokes equations for incompressible flow are solved in several horizontal planes to determine the pressure in the boundary of the corresponding cross-section of the chimney. Forces per unit length were obtained by integrating the pressure and are introduced in the structure using standard FEM interpolation techniques. For the fluid problem, a fractional step scheme based on a second order pressure splitting has been used. In each fluid plane, the displacements have been taken into account considering an Arbitrary Lagrangian Eulerian approach. The stabilization of convection and diffusion terms is achieved by means of quasi-static orthogonal subscales. For each period of time, the fluid problem was solved and the geometry of the mesh of each fluid plane is updated according to the structure displacements. Using this technique, along-wind and across-wind effects have been properly explained. The method was applied to an industrial chimney in three scenarios (with or without TMD and for different damping values) and for two wind speeds, showing different responses.