• Title/Summary/Keyword: Vortex street

Search Result 58, Processing Time 0.022 seconds

PIV Measurements of Non-cavitating and Cavitating Flow in Wake of Two-dimensional Wedge-shaped Submerged Body (PIV를 이용한 2차원 쐐기형 몰수체 후류의 비공동 및 공동 유동장 계측)

  • Hong, Ji-Woo;Jeong, So-Won;Ahn, Byong-Kwon
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.26-32
    • /
    • 2019
  • The vortex flow behind a bluff body has been a subject of interest for a very long time because of its engineering applicability such as to vortex induced vibration. In the near wake of a bluff body, vortices are periodically shed in two shear layers, which originate in the trailing edges. The far wake is made up of the classical Karman vortices, which are connected together by streamwise and spanwise vortices. These vortex formations have been studied in many experimental and numerical ways. However, most of the studies considered non-cavitating flow. In this study, we investigated cavitating flow in the wake of a two-dimensional wedge. Experiments were conducted in a cavitation tunnel of Chungnam National University. Using a particle image velocimetry (PIV), we measured the velocity fields under two different flow conditions: non-cavitating and cavitating regimes. We also investigated the vortex shedding frequencies using an absolute pressure transducer mounted on the top of the test window. Throughout the experiments, it was found that the shedding frequency of the vortex was strongly affected by cavitation, and the Strouhal number could exceed its value in the non-cavitating regime.

NUMERICAL FLOW VISUALIZATION ANALYSIS AROUND AN OSCILLATING SQUARE CYLINDER (정사각봉의 진동에 의한 유동해석)

  • Ju, M.K.;Ajith Kumar, R.;Sohn, C.H.;Gowda, R.H.L.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.115-119
    • /
    • 2007
  • In this paper, a flow visualization analysis has been carried out on an oscillating square section cylinder, numerically, using a commercially available code CFD-ACE. In this study, the square cylinder is forced to oscillate at different frequencies of excitation, viz., fe/fo=0.5, 1.0 and 2.0 (where, fe is the excitation frequency provided to the cylinder and fo is the natural vortex shedding frequency from the stationary cylinder at a particular Reynolds number (=5200). In all the cases, the peak-to-peak amplitude of oscillation is kept at 32% of the side dimension of the square cylinder. These studies are conducted to understand the influence of frequency of oscillation on the flow field features around the cylinder, particularly the mode of vortex shedding. Results indicate that, the flow field around a square cylinder is very much influenced by the excitation frequency, in particular the vortex shedding mode. It is also found that, the vortex street parameters are significantly influence by the oscillation frequency. Comparison with earlier reported experimental studies has also been attempted in this paper. In appears that, such a numerical exercise (as performed in this paper) is first of its kind. It is believed that, these studies would enable one to understand the mechanisms underlying the flow-induced vibrations of a square section cylinder.

  • PDF

Flow Characteristics of Wake Flow with Relation to a Tip Leakage Vortex at Different Flow Rates in an Axial Flow Fan (유량에 따른 축류홴의 익단누설와류 및 후류 특성)

  • Kim Kwang-Yong;Jang Choon-Man
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.3 s.234
    • /
    • pp.322-329
    • /
    • 2005
  • The flow characteristics in the blade passage and in the wake region of a low speed axial flow fan have been investigated by experimental analysis using a rotating hot-wire sensor for design and off-design operating conditions. The results show that the tip leakage vortex is moved upstream when flow rate is decreased, thus disturbing the formation of wake flow near the rotor tip. The tip leakage vortex interfaces with blade pressure surface, and results in high velocity fluctuation near the pressure surface. From axial velocity distributions downstream of the fan rotor, large axial velocity decay near the rotor tip is observed at near stall condition, which results in large blockage compared to that at the design condition. Although the wake flow downstream of the rotor blade is clearly measured at all operating conditions, the trough of the high velocity fluctuation due to Karmann vortex street in the wake flow is mainly observed at a higher flow condition than the design flow rate.

CFD-FSI simulation of vortex-induced vibrations of a circular cylinder with low mass-damping

  • Borna, Amir;Habashi, Wagdi G.;McClure, Ghyslaine;Nadarajah, Siva K.
    • Wind and Structures
    • /
    • v.16 no.5
    • /
    • pp.411-431
    • /
    • 2013
  • A computational study of vortex-induced transverse vibrations of a cylinder with low mass-damping is presented. An Arbitrary Lagrangian-Eulerian (ALE) formulation of the Unsteady Reynolds-Averaged Navier-Stokes equations (URANS), along with the Spalart-Allmaras (SA) one-equation turbulence model, are coupled conservatively with rigid body motion equations of the cylinder mounted on elastic supports in order to study the amplitude and frequency response of a freely vibrating cylinder, its flow-induced motion, Vortex Street, near-wake flow structure, and unsteady loading in a moderate range of Reynolds numbers. The time accurate response of the cylinder from rest to its limit cycle is studied to explore the effects of Reynolds number on the start of large displacements, motion amplitude, and frequency. The computational results are compared with published physical experiments and numerical studies. The maximum amplitudes of displacements computed for various Reynolds numbers are smaller than the experimental values; however, the overall agreement of the results is quite satisfactory, and the upper branch of the limit-cycle displacement amplitude vs. reduced velocity response is captured, a feature that was missed by other studies. Vortex shedding modes, lock-in phenomena, frequency response, and phase angles are also in agreement with experiments.

The near wake of three circular cylinders in an equilateral triangular arrangement at a low Reynolds number Re=100

  • Bai, Honglei;Lin, Yufeng;Alam, Md. Mahbub
    • Wind and Structures
    • /
    • v.30 no.5
    • /
    • pp.451-463
    • /
    • 2020
  • Two-dimensional numerical simulations are conducted at a low Reynolds number Re = 100 to investigate the near wake of three identical circular cylinders that are arranged in an equilateral triangular configuration. The incident angle of the three-cylinder configuration with respect to incoming flow is varied from θ = 0° to 60°, while the spacing between adjacent cylinders (L) covers a wide range of L/D = 1.25-7.0, where D is diameter of the cylinder. Typical flow structures in the near wake of the three-cylinder configuration are identified, including a single Karman vortex street, bistable flip-flopping near wake, anti-phase and/or in-phase vortex shedding, shear layer reattachment, and vortex impingement, depending on the configuration (L/D, θ). The behavior of Strouhal number (St) is discussed in detail, echoing the distinct structures of near wake. Furthermore, fluid forces on the individual cylinders are examined, which, though highly depending on (L/D, θ), exhibit a close correlation to the near wake behavior.

Numerical Calculation of Flow Pattern and Fluid Force on a Circular Arc-type Sea Anchor

  • Ro, Ki-Deok;Oh, Se-Kyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.8
    • /
    • pp.1258-1269
    • /
    • 2004
  • The fluid dynamic characteristics of a circular arc type sea anchor were calculated by a discrete vortex method. The flow for the surface of the sea anchor was represented by arranging bound vortices at adequate intervals. The simulations were performed by assuming that the separations occur at edges. With time, the drag coefficient was almost constant but the lift coefficient oscillated in a cycle due to von Karman's vortex street. As the camber ratios increase, the drag coefficient and Strouhal number were almost constant but the oscillating amplitude of the lift coefficient increased largely.

Design Method and Preliminary Data Analysis of Subscale Direct-Connect Test Facility for Liquid Ramjet Combustor (I) (액체 램제트 엔진용 소형 연소기 직접 연결식 시험장치의 설계 방법과 시험 데이터 분석 (I))

  • 성홍계;김인식;이규준;김경무;이도형;변종렬;황용석;오석진;한정식
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.59-63
    • /
    • 2003
  • This paper describes the conceptual design method of subscale direct-connect test facility for liquid fuel ramjet combustion study and preliminary analysis of test results. The measured pressure signal represents the successful operation of the test facility. The pressure oscillation in combustion chamber shows the dominant frequency of 190Hz, relatively very low frequency to 1L acoustic mode (1200Hz) based on the length of combustor. It is suspected that there were several driving sources, which are vortex street at backward step of combustor, inlet resonance induced by the long length of unchecked inlet, and/or combustor configuration with optical window.

  • PDF

Experimental and numerical studies on VIV characteristics of π-shaped composite deck of a cable-stayed bridge with 650 m main span

  • Wei Lei;Qi Wang;Haili Liao;Chengkai Shao
    • Wind and Structures
    • /
    • v.38 no.2
    • /
    • pp.93-107
    • /
    • 2024
  • A π-shaped composite deck in the form of an open section is a type of blunt body that is highly susceptible to wind loads. To investigate its vortex-induced vibration (VIV) performance, a large-scale (1/20) section model of a cable-stayed bridge with a main span of 650 m was tested in a wind tunnel. The vibration suppression mechanism of the countermeasures was analyzed using computational fluid dynamic. Experimental results demonstrate that the vertical and torsional VIVs of the original section can be suppressed by combining guide plates with a tilt angle of 35° and bottom central stabilizing plates as aerodynamic countermeasures. Numerical results indicate that the large-scale vortex under the deck separates into smaller vortices, resulting in the disappearance of the von Kármán vortex street in the wake zone because the countermeasures effectively suppress the VIVs. Furthermore, a full-bridge aeroelastic model with a scale of 1/100 was constructed and tested to evaluate the wind resistance performance and validate the effectiveness of the proposed countermeasures.

Development of surface-flow velocimetry based on flow characteristics around a cylinder piercing a water free surface (자유수면에 세워진 원주 주위의 유동특성을 이용한 자유표면 유속계의 개발)

  • Kim, In-Cheol;Cho, Myoung-Jong;Kim, Sang-Joon;Lee, Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.607-612
    • /
    • 2001
  • Based on the flow characteristics around a piercing cylinder, a free surface-flow velocitmetry which can be used in extremely harsh environment such as molten steel flow was developed. The velocimetry is consisted of finite length cylinder, load detecting elastic plate, electric signal transducer and data acquisition H/W and S/W. Using such a velocimetry, two velocity measurement schemes were established which one is flow resistance detecting scheme and the other is Karman Vortex frequency detecting scheme. For calibration of each scheme, realistic flow water model was used and in followings, detailed calibration processes were explained.

  • PDF

A Study on the Vortical patterns of a Heaving Foil (히빙익 후류의 유동패턴에 관한 연구)

  • Yang Chang-Jo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.8
    • /
    • pp.899-906
    • /
    • 2005
  • It is known that an oscillating airfoil can Produce a driving force through the generation of a reversed $K\'{a}rm\'{a}n$ vortex street, and this can be expected to be a new highly effective propulsion system. The wake formation behind the heaving airfoil was visualized and was measured using PIV systems We have been examined various conditions such as frequency number, amplitude in NACA 0010. As Strouhal number is greater than 0.08. wake profile with velocity deficit can be transformed into the wake with velocity excess After evaluating vortex center flow patterns in the wake investigated using tracking trajectories in temporal evaluation of the shedding vortices. We also Presented the experimental results on the unsteady vortices structure of the heaving airfoil at various parameters.