• 제목/요약/키워드: Vortex ring

검색결과 71건 처리시간 0.033초

수평 보텍스 링의 동적 특성;회전효과에 대한 실험 및 수치해석 (A Dynamic Characteristics of Horizontal Vortex;Experiment and Numerical Analysis on Rotating Effect)

  • 여창호;박재현;서용권
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1466-1471
    • /
    • 2004
  • In this paper, we report the numerical and experimental solutions of the axi-symmetric flows in the axial plane driven by an impingement of fluid from the bottom wall of a circular cylinder. We managed to visualize successfully the flow pattern shown on the vertical plane through the container axis. The numerical results are not show to compare well with the experimental results for the case of the Rossby number 3. Because the numerical results calculate on the assumption that vortex flows are axi-symmetric flow on the other hand real experimental results are show asymmetric flow. The numerical solutions reveal that inertial oscillation plays an important role at small Rossby numbers, or at a larger background rotation.

  • PDF

환형연소기의 스월난류유동장에 대한 Large Eddy Simulation (Large Eddy Simulation of Swirling Turbulent Flows in a Annular Combustor)

  • 김종찬;성홍계;차봉준;양계병
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제30회 춘계학술대회논문집
    • /
    • pp.67-70
    • /
    • 2008
  • 스월 연소기의 비반응 난류 유동특성을 파악하기 위하여 3차원 Large Eddy Simulation(LES)을 수행하였다. 연소기는 GEAE LM6000 연소기를 이용하였으며, 실제 실험 결과에 따른 인젝터 유입 형상을 적용하였다. 주 흐름 부분에서 강한 vortex breakdown, 중심 재순환영역, 모서리 재순환영역, 축방향으로 전진하는 스월링 형상, 주기적으로 나타나는 난류 구조를 관찰하였다. 계산된 결과는 실제 실험결과와 선행연구자들의 LES 계산결과와 비교하여 잘 맞음을 확인하였다.

  • PDF

직사각형 평판날개의 리드래그 운동이 조합된 날개짓에 대한 비정상 VLM 공력 해석 (Aerodynamic Analysis of a Rectangular Wing in Flapping with Lead-Lag Motion using Unsteady VLM)

  • 김우진;김학봉
    • 한국항공운항학회지
    • /
    • 제14권2호
    • /
    • pp.39-44
    • /
    • 2006
  • The unsteady vortex lattice method is used to model lead-lag in flapping motions of a rectangular flat plate wing. The results for plunging and pitching motions were compared with the limited experimental results available and other numerical methods. They show that the method is capable of simulating many of the features of complex flapping flight. The lift, thrust and propulsive efficiency of a rectangular flat plate wing have been calculated for various lead-lag motion and reduced frequency with an amplitude of flapping angle(20o). To describe a motion profile of wing tip such as elliptic, line and circle, the phase difference of flapping and lead-lag motion was changed. And the effects of the motion profile on the aerodynamic characteristics of the flapping wing are discussed by examination of their trends.

  • PDF

Optimization of energy saving device combined with a propeller using real-coded genetic algorithm

  • Ryu, Tomohiro;Kanemaru, Takashi;Kataoka, Shiro;Arihama, Kiyoshi;Yoshitake, Akira;Arakawa, Daijiro;Ando, Jun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권2호
    • /
    • pp.406-417
    • /
    • 2014
  • This paper presents a numerical optimization method to improve the performance of the propeller with Turbo-Ring using real-coded genetic algorithm. In the presented method, Unimodal Normal Distribution Crossover (UNDX) and Minimal Generation Gap (MGG) model are used as crossover operator and generation-alternation model, respectively. Propeller characteristics are evaluated by a simple surface panel method "SQCM" in the optimization process. Blade sections of the original Turbo-Ring and propeller are replaced by the NACA66 a = 0.8 section. However, original chord, skew, rake and maximum blade thickness distributions in the radial direction are unchanged. Pitch and maximum camber distributions in the radial direction are selected as the design variables. Optimization is conducted to maximize the efficiency of the propeller with Turbo-Ring. The experimental result shows that the efficiency of the optimized propeller with Turbo-Ring is higher than that of the original propeller with Turbo-Ring.

Level Set 법을 이용한 삼차원 이상유동 해석에 관한 연구 (A THREE DIMENSIONAL LEVEL SET METHOD FOR TWO PHASE FLOWS)

  • 강동진;이벨리나이바노바이바노바
    • 한국전산유체공학회지
    • /
    • 제13권4호
    • /
    • pp.126-134
    • /
    • 2008
  • We developed a three dimensional Navier-Stokes code based on the level set method to simulate two phase flows with high density ratio. The Navier-Stokes equations with consideration of the surface tension effects are solved by using SIMPLE algorithm on a non-staggered grid. The present code is validated by simulating two test problems. First one is to simulate a rising bubble inside a cube. The thickness of the interface of the bubble is shown to affect the pressure distribution around the interface. As the thickness decreases, the pressure field around the interface becomes more oscillatory. As the bubble rises, a ring vortex is shown to form around the interface and the bubble eventually develops into an ellipsoidal shape. Merge of two bubbles inside a container is secondly tested to show the robustness of the present code for two phase flow simulation. Numerical results show stable and reliable behavior during the process of merging of two bubbles. The velocity and pressure fields around the interface of bubbles are shown oscillation free during the merging of two bubbles.

SPRAY STRUCTURE OF HIGH PRESSURE GASOLINE INJECTOR IN A GASOLINE DIRECT INJECTION ENGINE

  • Lee, Chang Sik;Chon, Mun Soo;Park, Young Cheol
    • International Journal of Automotive Technology
    • /
    • 제2권4호
    • /
    • pp.165-170
    • /
    • 2001
  • This study is focussed on the investigation of spray characteristics from the high pressure gasoline injector for the application of gasoline direct injection engine. For the analysis of spray structure of high pressure gasoline injector; the laser scattering method with a Nd-Yag laser and the Phase Doppler particle analyzer system were applied to observe the spray development and the measurement of the droplet size and velocity of the spray, respectively. Also spatial velocity distribution of the spray droplet was measured by use of the particle image velocity system. Experimental results show that high pressure gasoline injector shapes the hollow-cone spray, and produce the upward ring shaped vortex on the spray surface region. This upward ring shaped vortex promotes the secondary atomization of fuel droplets and contributes to a uniform distribution of fuel droplets. Most of fuel droplets are distributed under 31$\mu m$ of the mean droplet size (SMD) and the frequency distribution of the droplet size under 25$\mu m$ is over 95% at 7 MPa of injection pressure. According to the experimental results of PIV system, the flow patterns of the droplets velocity distribution in spray region are in good agreement with the spray macroscopic behaviors obtained from the visualization investigation.

  • PDF

과팽창 노즐에서 발생하는 충격파 박리 패턴의 천이에 관한 연구 (A Study on the Transitional Shock Separation Patterns in an Over-Expanded Nozzle)

  • 이종성;;김희동
    • 한국추진공학회지
    • /
    • 제14권3호
    • /
    • pp.9-15
    • /
    • 2010
  • 과팽창 로켓노즐에서 발생하는 충격파 박리패턴의 천이 유동장을 예측하기 위해 축대칭 수치해석적연구를 수행하였다. 비정상, 압축성 N-S 방정식에 k-$\omega$ SST 난류모델을 적용하여, 유한 체적법으로 계산하였다. 종래의 실험적 연구 결과와 비교하였으며, 계산된 결과와 정성적으로 잘 일치하였다. 본 연구의 결과로부터 RSS에서 FSS로 천이할 때 가장 큰 횡력이 발생하며, 이는 비점성 제트 코어 영역에서 발생하는 Vortex ring의 발달로 기인됨을 예측하였다. 또한 엔진 시동과정과 정지과정에서 발생하는 히스테리시스 현상을 잘 모사하였다.

Wake dynamics of a 3D curved cylinder in oblique flows

  • Lee, Soonhyun;Paik, Kwang-Jun;Srinil, Narakorn
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.501-517
    • /
    • 2020
  • Three-dimensional numerical simulations were performed to study the effects of flow direction and flow velocity on the flow regime behind a curved pipe represented by a curved circular cylinder. The cylinder is based on a previous study and consists of a quarter segment of a ring and a horizontal part at the end of the ring. The cylinder was rotated in the computational domain to examine five incident flow angles of 0-180° with 45° intervals at Reynolds numbers of 100 and 500. The detailed wake topologies represented by λ2 criterion were captured using a Large Eddy Simulation (LES). The curved cylinder leads to different flow regimes along the span, which shows the three-dimensionality of the wake field. At a Reynolds number of 100, the shedding was suppressed after flow angle of 135°, and oblique flow was observed at 90°. At a Reynolds number of 500, vortex dislocation was detected at 90° and 135°. These observations are in good agreement with the three-dimensionality of the wake field that arose due to the curved shape.

PTT/Tencel/Cotton 친환경 MVS 혼방사 편성물의 물성에 관한 연구 (II) (Wearing Performance of Garment for Emotional Knitted Fabrics Made of PTT/Tencel/Cotton MVS Blended Yarns (II))

  • 김현아
    • 한국의류산업학회지
    • /
    • 제17권6호
    • /
    • pp.1020-1029
    • /
    • 2015
  • This paper investigated the wearing performance of knitted fabrics made of air vortex yarns using PTT/tencel/cotton fibres in comparison with ring and compact yarns for emotional garment. Wicking property of knitted fabric made of MVS yarns was worse than those by ring and compact yarns, however, drying property of knitted fabric made of MVS yarns was better than those by ring and compact yarns, which was explained as more water vapor transport due to larger openness between fibres in the MVS yarns than those in the ring and compact yarns. Thermal conductivity of knitted fabric made of MVS was lower than those of ring and compact yarns and maximum heat flow(Qmax) at the transient state of MVS knitted fabric was lower than those of ring and compact yarns, which may be attributed to MVS yarn structure that has parallel fibres in the core part of the yarn and fasciated fibre bundles on the sheath part with roughness on the yarn surface. However, pilling of MVS knitted fabric was better than those by ring and compact yarns, which was caused by less and shorter hairy fibres protruded from MVS yarn surface than those of ring and compact yarns. It was observed that tactile hand of MVS yarn knitted fabrics was stiffer than those of ring and compact yarns knitted fabrics. It was explained by low extensibility and compressibility and high bending and shear rigidities of the MVS yarn knitted fabrics, which resulted in bad wearing performance of MVS knitted fabric.

O-ring 을 이용한 원주의 저항감소에 관한 실험적 연구 (Drag Reduction of a Circular Cylinder With O-rings)

  • 임희창;이상준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2089-2094
    • /
    • 2003
  • The flow around a circular cylinder was controlled by attaching O-rings to reduce drag force acting on the cylinder. Four experimental models were tested in this study; one smooth cylinder of diameter D (D=60mm) and three cylinders fitted with O-rings of diameters d=0.0167D, 0.05D and 0.067D with pitches of PPD=1D, 0.5D and 0.25D. The drag force, mean velocity and turbulent intensity profiles in the near wake behind the cylinders were measured for Reynolds numbers based on the cylinder diameter in the range of $Re_D=7.8{\times}10^3{\sim}1.2{\times}10^5$. At $Re_D=1.2{\times}10^5$, the cylinder fitted with O-rings of d=0.0167D in a pitch interval of 0.25D shows the maximum drag reduction of about 5.4%, compared with the smooth cylinder. The drag reduction effect of O-rings of d=0.067D is not so high. For O-ring circulars, as the Reynolds number increases, the peak location of turbulence intensity shifts downstream and the peak magnitude is decreased. Flow field around the cylinders was visualized using a smoke-wire technique to see the flow structure qualitatively. The size of vortices and vortex formation region formed behind the O-ring cylinders are smaller, compared with the smooth cylinder.

  • PDF