• 제목/요약/키워드: Vortex nozzle

Search Result 106, Processing Time 0.052 seconds

증기 터빈 노즐에서의 익단 간극에 의한 3차원 유동장의 수치 해석적 연구 (3-Dimensional Computations within the Flow Passage of the Steam Turbine Nozzle with and without Tip Clearance)

  • 조수용;오군섭;김수용;윤의수
    • 연구논문집
    • /
    • 통권25호
    • /
    • pp.55-65
    • /
    • 1995
  • Three-dimensional incompressible turbulent flow fields within the passage of the steam turbine nozzle with/without tip clearance have been simulated by solving the Navier-Stokes equations with SIMPLE scheme. The extended k-e model is applied to modeling the Reynolds stresses. Grids in the computational domain are generated by solving the Poisson's equations to improve the smoothness and orthogonality. Flow losses, secondary flow, velocity profiles, and deviation angles are obtained. The computated results without tip clearance show good agreement with the experimental data.

  • PDF

끝벽의 형상이 터빈 노즐안내깃 캐스케이드내 3차원 유동에 미치는 영향에 관한 연구 (Experimental Study on Effect of the Contoured Endwall on the Three-Dimensional Flow in a Turbine Nozzle Guide Vane Cascade)

  • 윤원남;정진택
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.514-519
    • /
    • 2003
  • The objective of this study is to document the secondary flow and the total pressure loss distribution in the contoured endwall installed linear turbine nozzle guide vane cascade passage and to propose an appropriate contraction ratio of the contoured endwall which shows the best loss reduction among the simulated cases. In this study, three different contraction ratio of contoured endwalls have been tested. This study was performed by experimental method and when the contoured endwall has the contraction ratio of 0.17 on exit height the results showed the best loss reduction.

  • PDF

두 개의 평행한 평면 제트의 실험적 연구 (Experimental Investigation of Two Parallel Plane Jets)

  • 김동건;윤순현
    • 대한기계학회논문집B
    • /
    • 제29권2호
    • /
    • pp.214-223
    • /
    • 2005
  • The characteristics of flow on two parallel plane jets was experimentally investigated. The two nozzles each with an aspect ratio of 20 were separated by 6 nozzle widths. Reynolds number based on nozzle width was set to 5,000 by nozzle exit velocity. The particle image velocimetry and pressure transducer were employed to measure turbulent velocity components and mean static pressure, respectively. In case of unventilated parallel plane jets, it was shown that a recirculation zone with sub-atmospheric static pressure was bounded by the inner shear layers of the individual jets and the nozzles plated. There was no recirculation zone in the ventilated parallel plane jets. It was found that the spanwise turbulent intensities of unventilated jets were higher than those of ventilated jets because of the interaction of jets, and the streamwise turbulent intensities of ventilated jets were higher than those of unventilated jets because of the effect of entrainment.

공기베어링의 노즐 형상 변화에 따른 출구면 근방의 유동구조에 대한 수치해석 (Numerical Investigation of Flow Structures near Various Nozzle Exit Geometries of the Air Bearing)

  • 박병호;한용운;박상신
    • 대한기계학회논문집B
    • /
    • 제38권3호
    • /
    • pp.235-242
    • /
    • 2014
  • 공기 베어링의 성능개선을 위하여, 일반적인 급기공 형상(drill shape), 곡면 급기공 형상(matched cube shape) 및 $45^{\circ}C$ 모따기 노즐 출구부(trimmed shape)를 가지는 3가지 형태의 노즐형상에서 급기압을 변화 시켰을 때, 샤프트면 출구압력 특성을 전산유체역학 상용코드를 이용하여 분석하였다. 샤프트면 에서 압력 분포는 노즐 중심부에서 정체점 유동의 영향으로 최대압이 발생하며, 노즐 출구부와 샤프트면 사이의 압력분포는 미세 간극의 영향으로 와류가 형성되어 반경방향으로 국부적인 압력상승 현상이 발생한 후 음압영역이 발생하는 것이 관찰되었다. 또한 이러한 현상은 일반적인 형태의 노즐에서 급기압력비 6.92이상인 경우는 나타나지 않는 것으로 관찰되었다. 급기공 노즐 형상을 matched cubic 곡면으로 변화시켜 샤프트면에서 얻어진 압력 분포는 기존의 노즐과 비교한 결과 순간적인 상승압 구간이 모든 경우에 대하여 존재하였으며 급기압력비 10근처까지 음압구간이 나타나는 것으로 관찰되었다. 또한, 노즐 출구부를 모따기로 변형시켰을 때, 샤프트면에서 최대압력의 영향권이 반경방향으로 확대되었고 음압영역은 나타나지 않는 것으로 관찰되었다. 결과적으로, 급기공 내부의 형상변화보다는 노즐 출구면 외부의 변형이 성능개선에 유리한 것으로 관찰된다.

고속 충돌제트의 불안정 특성 (Instability of High-Speed Impinging Jets(II))

  • 권영필;임정빈
    • 대한기계학회논문집B
    • /
    • 제22권4호
    • /
    • pp.450-467
    • /
    • 1998
  • The characteristics of the unstable impinging circular jet is investigated based on the frequency characteristics and the sound field of the impinging-tones. Two symmetric modes S1 and S2, associated with low frequency and high frequency respectively, and one helical mode H have been observed. At low speed the S2 mode is dominant and switched by the S1 mode as the speed increases. When the jet speed is high the S1 mode is very active over the impinging distance from half the nozzle diameter to its ten times, while the S2 mode occurs at shorter distance corresponding to stage 2 and 3. The helical mode H seems unstable, likely to be influenced much by the experimental environment, and occurs at relatively high speed with almost the same frequency characteristics as the S2 mode. By estimating the convection speed of the unstable jet, it is found that the ratio of the convection speed to the jet speed decreases with both Strouhal number and Reynolds number and the speed of S2 mode is faster than the Si mode. When the present experimental results are compared with the previous investigations performed for the hole tone and the impinging tone with a small plate, the S1 mode is found to be associated with the ring vortex of large diameter with low speed, but the S2 mode with the vortex of small diameter with high speed. In addition, the frequency is found to be influenced by the nozzle configuration but the characteristics is almost the same. From the impinging distance and frequency range, it can be deduced that S1 mode is related with the jet column mode and S2 mode with the shear mode.

무인헬리콥터를 이용한 항공방제시스템 개발(I) - 항공방제시스템 구축을 위한 기초 분무특성 - (Development of Aerial Application System Attachable to Unmanned Helicopter - Basic Spraying Characteristics for Aerial Application System -)

  • 강태경;이채식;최덕규;전현종;구영모;강태환
    • Journal of Biosystems Engineering
    • /
    • 제35권4호
    • /
    • pp.215-223
    • /
    • 2010
  • In order to develop an precision aerial pesticide application system to be attached to an unmanned helicopter which can be applied to small lots of land, this study analyzed the flowing and spraying characteristics of the spray droplets by the main rotor downwash by setting the application conditions at the flight altitude of 3 m, the diameter of main rotor of 3.1 m, the boom length of around 2.8 m, and the spraying rate of 8 L/ha. The results of this study are summarized below. Through analysis of the covering area ratio of the spray droplets by main rotor downwash by nozzle type, boom with tilt angle and height, it was found that the covering area ratio of the twin flat-fan nozzle of around 25% was more uniform than other types of nozzle, also boom with $10^{\circ}$ tilt angle and spraying height of 3 m was shown to be the appropriate conditions for aerial application of pesticides. It was found that the nozzle position to minimize the scattering loss of spray droplets due to vortex phenomenon at both ends of the main rotor was around 10 cm from the end of the main rotor. An application test for the aerial pesticide application system attached to the HUA-ACEI unmanned helicopter developed by the Rural Development Administration showed that the range of covering area ratio of the spray droplets was 10-25%, and the spraying width was approximately 7 m when over 10% of covering area ratio was considered for valid spraying.

증발디젤분무의 공간적 구조해석에 관한 기초 연구 (Basic Study on the Spatial Structure Analysis of the Evaporative Diesel Spray)

  • 염정국
    • 동력기계공학회지
    • /
    • 제14권3호
    • /
    • pp.5-12
    • /
    • 2010
  • The purpose of this study is to analyze heterogeneous distribution of branch-like structure at downstream region of inner spray. The previous many studies about diesel spray structure have yet stayed in the analysis of 2-D structure, and there are very few of informations which are concerned with 3-D analysis of the structure. The heterogeneous distribution of droplets in inner spray affects the mixture formation of diesel spray, and also the combustion characteristics of the diesel engines. Therefore, in order to investigate 3-D structure of evaporative spray the laser beam of 2-D plane was used in this study. Liquid fuel was injected from a single-hole nozzle (l/d=5) into a constant-volume vessel under high pressure and temperature in order to visualize the spray phenomena. The incident laser beam was offset on the central axis. From the images analysis taken by offset of laser beam, we examine formation mechanism of heterogeneous distribution by vortex flow at the downstream of the diesel spray. As the experimental results, the branch-like structure formed heterogeneous distribution of the droplets consists of high concentration of vapor phase in the periphery of droplets and spray tip of branch-like structure. Also the 3-D spatial structure of the evaporative diesel spray can be verified by images obtained from 2-D measurement methods.

유체-구조 유탄성 연성운동 측정해석 (Measurements and Analysis on Hydroelastic Flow-Structure Interactions)

  • 도덕희;조효제;황태규;조경래;편용범;조용범
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.53-54
    • /
    • 2006
  • Experimental analyses on the Hydroelastic Flow-Structure Interactions on pulsed impinged jet is measured with the FSIMS(Flow-Structure Interaction Measurement System. The nozzle diameter is D=15mm and two major experiments have been carried out for the cases of the distance between the nozzle tip to the elastic wall is 6.0. The pulsed jets were controlled by a solenoid valve and were impinged onto an elastic plate (material: silicon, diameter: 350mm, thickness: 0.5mm, hardness: 15). The Reynolds numbers were 20,000 and 24,000 when the jets were impinged with the volume velocities. The results showed that the elastic plate moved slightly to the opposite direction of the jet direction at the time of valve opening. It has been shown that the vortices travelling over the surface of the wall made the elastic wall distorted locally due to a vector forces between rotating forces of the vortex and a newly-incoming flow.

  • PDF

디젤 충돌 분무의 발달 과정 및 내부 유동 특성 (Internal Structure and Velocity Field of the Impinging Diesel Spray on the Wall)

  • 전문수;서현규;박성욱;이창식
    • 한국분무공학회지
    • /
    • 제10권3호
    • /
    • pp.1-8
    • /
    • 2005
  • The purpose of this study is to investigate the internal structure of the impinged diesel spray at various experimental conditions. To examine the effect of various factors on the development of a diesel spray impinging on the wall, experiments were conducted at the various Injection pressures, wall distances from the nozzle tip and angles of wall inclination. The PIV system consists of a double pulsed Nd:YAG laser was utilized to analyze the internal flow structure of impinged diesel sprays. The velocity fields from the PIV system were compared with the results measured by the phase Doppler particle analyzer(PDPA)system. The results show that internal flow pattern of the impinged spray was similar with the results from the PDPA system. The radial velocity of the impinged spray was increased with the increase in the injection pressure and near the nozzle-wall distance. The generation of vortex was also promoted with the Increase in angles of wall inclination.

  • PDF

발사초기 단계에서 발사체의 마하수, 받음각 및 노즐 효과에 따른 공력특성 연구 (Study on Aerodynamic Characteristics of a Launch Vehicle with Mach Number, Angle of Attack and Nozzle Effect at Initial Stage)

  • 정태건;김성초;최종욱
    • 한국가시화정보학회지
    • /
    • 제17권1호
    • /
    • pp.34-42
    • /
    • 2019
  • Aerodynamic characteristics for a launch vehicle are numerically analyzed with various conditions. The local drag coefficients are high at the nose of the launch vehicle in subsonic region and on the main body in supersonic region because of the induced drag and the wave drag, respectively. The drag coefficients show the similar trend with the angle of attack except zero degree. However, the more the angle of attack increases, the more dependent on the Mach number the lift coefficient is. The body rotation for the flight stability destroys the vortex pair formed above the body opposite to the flight direction, so the flow fields are more or less complicated. The drag coefficient of the launch vehicle at sea level is about three times larger than that at altitude 7.2 km. And the thrust jet at the nozzle causes to reduce the drag coefficient compared with the jetless transonic flight.