• Title/Summary/Keyword: Vortex lattice method (VLM)

Search Result 23, Processing Time 0.055 seconds

Potential Based Prediction Methods of Aerodynamic and Wake Simulation of Wind Turbine Blade (포텐셜 유동을 기반으로 한 풍력 터빈 블레이드의 공력 해석 및 후류 예측 기법에 관한 연구)

  • Kirn, Ho-Geon;Shin, Hyung-Ki;Lee, Soo-Gab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.414-419
    • /
    • 2007
  • This paper describes the prediction of aerodynamic performance and wake of HAWT in normal and yawed flow operation using potential based methods. In order to analyze aerodynamic performance of wind turbine WINFAS program is used, which is based on VLM(Vortex Lattice Method) and CVC(Constant vorticity contour) Free wake model. Some problems of CVC vortex filament method are investigated arid to improve these problems vortex ring wake are introduced in behalf of CVC vortex filament. The prediction results using the vortex lattice wake are compared to experimental data.

  • PDF

Numerical And Experimental Studies On Wing In Ground Effect

  • Suh, Sung-Bu;Jung, Kwang-Hyo;Chun, Ho-Hwan
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.2
    • /
    • pp.110-119
    • /
    • 2011
  • Numerical and experimental studies were performed to investigate the aerodynamic performance of a thin wing in close vicinity to the ground. The vortex lattice method (VLM) was utilized to simulate the wing in ground (WIG) effect, which included freely deforming wake elements. The numerical results acquired through the VLM were compared to the experimental results. The experiment entailed varying the ground clearance using the DHMTU (Department of Hydromechanics of the Marine Technical University of Saint Petersburg) wing and the WIG craft model in the wind tunnel. The aero-dynamic influence of the design parameters, such as angles of attack, aspect ratios, taper ratios, and sweep angles were studied and compared between the numerical and experimental results associated with the WIG craft. Both numerical and experimental results suggested that the endplate augments the WIG effect for a small ground clearance. In addition, the vortex lattice method simulated the wake deformation following the wing in the influence of the ground effect.

Aerodynamic Analysis of a Rectangular Wing in Flapping with Lead-Lag Motion using Unsteady VLM (직사각형 평판날개의 리드래그 운동이 조합된 날개짓에 대한 비정상 VLM 공력 해석)

  • Kim, Woo-Jin;Kim, Hark-Bong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.2
    • /
    • pp.39-44
    • /
    • 2006
  • The unsteady vortex lattice method is used to model lead-lag in flapping motions of a rectangular flat plate wing. The results for plunging and pitching motions were compared with the limited experimental results available and other numerical methods. They show that the method is capable of simulating many of the features of complex flapping flight. The lift, thrust and propulsive efficiency of a rectangular flat plate wing have been calculated for various lead-lag motion and reduced frequency with an amplitude of flapping angle(20o). To describe a motion profile of wing tip such as elliptic, line and circle, the phase difference of flapping and lead-lag motion was changed. And the effects of the motion profile on the aerodynamic characteristics of the flapping wing are discussed by examination of their trends.

  • PDF

Aerodynamic Analysis of a Rectangular Wing in Flapping and Twisting Motion using Unsteady VLM (직사각형 평판 날개의 날개짓과 비틀림 운동에 대한 비정상 VLM 공력 해석)

  • Kim, U-Jin;Kim, Hak-Bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.14-21
    • /
    • 2006
  • The unsteady vortex lattice method is used to model twisting and flapping motions of a rectangular flat plate wing. The results for plunging and pitching motions were compared with the limited experimental results available and other numerical methods. They show that the method is capable of simulating many of the features of complex flapping flight. The lift, thrust and propulsive efficiency of a rectangular flat plate wing have been calculated for various twisting angles and reduced frequency with an amplitude of flapping angle($20^{\circ}$). And the effects of the twisting on the aerodynamic characteristics of the flapping wing are discussed by examination of their trends.

A Study on the Performance of the Wing In Ground Effect by a Vortex Lattice Method (와류 격자법에 의한 지면효과익의 성능 연구)

  • Jeong, Gwang-Hyo;Jang, Jong-Hui;Jeon, Ho-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.2 s.28
    • /
    • pp.87-96
    • /
    • 1998
  • A numerical simulation was done to investigate the performance of thin wings in close vicinity to ground. The simulation is based on Vortex Lattice Method(VLM) and freely deforming wake elements are taken into account for a sudden acceleration case. The parameters covered in the simulation are angle of attack, aspect ratio, ground clearance, sweep angle and taper ratio. In addition, the effect of the wing endplate on the ground effect is included. The wing sections used for present computations are uncambered, cambered and S-types. The present computational results are compared with other published computational results and experimental data.

  • PDF

Aerodynamic Performance Prediction of Horizontal Axis Wind Turbine by Vortex Lattice Method (와류 격자법에 의한 수평축 풍력터빈의 공기역학적 성능예측)

  • 유능수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1264-1271
    • /
    • 1990
  • The vortex lattice method was adopted to predict the aerodynamic performance of a horizontal axis wind turbine. For this simulation. the rotor blade was divided into many panels both in chordwise and spanwise direction and then replaced by horseshoe vortices. The wake was divided into two parts of near wake and far wake : the near wake was assumed as helical vortex line elements and the far wake was modeled by semi-infinite circular vortex cylinder. The induced velocity components were calculated by the Biot-Savart law. By this way the power coefficient was obtained and represented as a function of the tip speed ratio. The numerical results obtained were compared with those of the other methods and experimental results and showed good agreement with experimental results.

Performance prediction of horizontal axis marine current turbines

  • Bal, Sakir;Atlar, Mehmet;Usar, Deniz
    • Ocean Systems Engineering
    • /
    • v.5 no.2
    • /
    • pp.125-138
    • /
    • 2015
  • In this study, hydrodynamic performance of a 400 mm diameter horizontal axis marine current turbine model was tested in a cavitation tunnel with 1.21 m x 0.8 m cross-section for over a range of tip speed ratios. Torque and thrust data, as well as cavitation visualizations, for certain operating conditions were acquired. Experimental results indicated that the turbine can be exposed to significant amount of sheet and cloud cavitation over the blades along with vortex cavitation at the blade tips. Inception and distribution of cavitation along the blades of the model turbine were then modelled numerically for design operating conditions using a vortex lattice method. The method was also applied to a turbine tested previously and obtained results were compared with the data available. The comparison between simulation results and experimental data showed a slight difference in terms of span-wise extent of the cavitation region. The cloud and tip vortex cavity observed in experiments cannot be modelled due to the fact that the VLM lacks the ability to predict such types of cavitation. Notwithstanding, the use of such prediction methods can provide a reasonably accurate approach to estimate, therefore take the hydrodynamic effects of cavitation into account in design and analysis of marine current turbines.

Multidisciplinary Design Optimization(MDO) of a Medium-Sized Solar Powered HALE UAV Considering Energy Balancing (에너지 균형조건을 고려한 중형 태양광 추진 고고도 장기체공 무인기의 다분야 통합 최적설계)

  • Park, Kyung-Hyun;Min, Sang-Gyu;Ahn, Jon;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.2
    • /
    • pp.129-138
    • /
    • 2012
  • A MDO study of a midium-sized solar powered High Altitude Long Endurance (HALE) UAV has been performed, focused on energy balance. In the MDO process, Vortex Lattice Method(VLM) is employed for the aerodynamic modeling of the vehicle, of which structural weight is estimated with the modeling proposed by Cruz. Tail volume ratios have been set as constants, while the location of tail surfaces is determined from longitudinal static stability criterion. By balancing the available energy from solar cells, battery, and altitude, with the energy-requirement of the vehicle, the possibility of continuous flight over 24-hours has been investigated. The solar radiation level is set as that of summer at the latitude of $36^{\circ}$ north. During the daytime, the aircraft climbs using solar energy, accumulating potential energy, which supplements energy balance during the night. Optimizations have been sought in size of the vehicle, its weight distribution, and flight strategy.

Study on Optimization of Anti-erosion Rudder Section of Large Container Ship by Genetic Algorithm (유전자 알고리즘을 이용한 컨테이너선을 위한 침식예방용 최적방향타 단면 설계)

  • Kim, Moon-Chan;Lee, Un-Sik;Byun, Tae-Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.4
    • /
    • pp.403-410
    • /
    • 2008
  • This paper describes the optimization of the rudder section by the genetic algorism based on VLM(Vortex Lattice Method) and panel method. The developed propeller-rudder analysis program has been validated by comparing with experimental data. The research extends to optimize the anti-erosion rudder section of the large container ship. The object function is the amount of pressure at leading edge of rudder which is closely related with erosion phenomena. The optimized rudder has been compared with conventional rudder with NACA 0021 section by analyzing with the developed program. The finally optimized section has low and mild pressure distribution in comparison with the NACA rudder. The experiments is expected to be carried out for the validation of the present optimization and more parametric study of section geometry is also expected to be conducted in the near future.

Effect of interaction between blade and tower in upwind type HAWT on blade aerodynamic performance and load (Upwind형 수평축 풍력발전기의 타워 영향에 의한 블레이드 공력 성능 및 하중 변화에 대한 고찰)

  • Kim, Ho-Geon;Shin, Hyung-Ki;Park, Ji-Woong;Lee, Soo-Gab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.261-264
    • /
    • 2006
  • This paper describes the effects to wind turbine blade aerodynamics due to interaction between blade and tower on upwind type HAWT. In order to analyze effects of blade-tower interact ion, the analyst s program WINFAS which is based on VLM(Vortex Lattice Method), Free wake and FVE model is used. In this study, the changes of wind turbine blade aerodynamics caused by blade-tower interact ion are Investigated with various parameters windshear, yaw error, TSR and tower diameter.

  • PDF