• Title/Summary/Keyword: Vortex flux flow

Search Result 46, Processing Time 0.026 seconds

Turbulent Enhancement of the Cooling System of Nuclear Reactor by Large Scale Vortex Generation in a Nuclear Fuel Bundles (원자로 연료봉내 대형 와유동에 의한 원자로 냉각제 시스템의 난류 증진)

  • 전건호;박종석;최영돈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.11
    • /
    • pp.1004-1011
    • /
    • 2000
  • Experimental and computational studies were carried out to confirm the turbulent enhancement of the cooling system of nuclear reactor by large scale vortex generation in nuclear fuel bundle. The large scale vortex motions were generated by rearranging the inclination angles of mixing vanes to the coordinate directions. Axial development of mean and turbulent velocities in the subchannels were measured by the 2-color LDV system. Eddy diffusivity heat flux model and $k-varepsilon$ model were employed to analyze the turbulent heat and fluid flows in the subchannel. The turbulence generated by split mixing vanes has small length scales so that they maintain only about $10 D_H$ after the spacer grid. On the other hand, the turbulences generated by the large scale vortex continue more and remain up to $25 D_H$after the spacer gird.

  • PDF

The Effect of the Making Methods of Hollow Fiber Active Layer on Performance for Nanofiltration Helical Module (Nanofiltration Helical Module에서 Hollow Fiber Active Layer의 성형법에 따른 성능변화에 관한 연구)

  • ;Belfort, Georges
    • Membrane Journal
    • /
    • v.7 no.2
    • /
    • pp.95-109
    • /
    • 1997
  • The effects of varing axial flow rate and solute concentration on the performance of both module sets made by different methods for active layer formation were compared and determined. All experiments were conducted simultaneously at the same transmembrane pressure and energy consumption per membrane area. In every comparative run between the presence of Dean vortices in a helical module and absence of such vortices in a linear module from the first module set, the solution fluxes and permeabilities were higher, and in some cases substantially higher for the vortex flow. With pure water, the permeabilities of both modules from the second module set were different and the flux in a linear module was 150% higher than in the helical module. This explained both module membranes were totally different.

  • PDF

Velocity and temperature Visualization of Air Convection in Differently Heated Rectangular Cavity with Upper channel (상부채널을 갖는 사각공간에서 열유속 변화에 따른 공기대류의 속도와 온도 가시화)

  • Lee, Cheol-Jae;Chung, Han-Shik;Park, Chan-Su;Cho, Dae-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.290-295
    • /
    • 2000
  • An experimental study was carried out in a cavity with upper channel and square heat surface by visualization equipment with Mach-Zehnder interferometer and laser apparatus. The visualization system consists of 2-dimensional sheet light by Argon-Ion Laser with cylindrical lens and flow picture recording system. Instant simultaneous velocity vectors at whole field were measured by 2-D PIV system(CACTUS'2000). Obtained result showed various flow patterns. Severe unsteady flow fluctuation within the cavity are remarkable and sheared mixing layer phenomena are also found at the region where inlet flow is collided with the counter-clockwise rotating main primary vortex. Photographs of Mach-Zehnder are also compared in terms of constant heat flux.

  • PDF

Aerodynamic Calculations in Hover of KUH Rotor Blade (한국형 기동헬기 블레이드의 제자리 비행 공력 해석)

  • Kang, Hee-Jung;Kim, Seung-Ho;Jung, Mun-Seung;Lee, Hee-Dong;Kwon, Oh-Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.25-28
    • /
    • 2008
  • An aerodynamic calculation in hover of KUH main rotor blade is performed using a three-dimensional unstructured hybrid mesh viscous flow solver. The flow solver utilizes a vertex-centered finite-volume scheme that is based on the Roe's flux-difference splitting with an implicit Jacobi/Gauss-Seidel time integration. The eddy viscosity are estimated by the Spalart-Allmaras one-equation turbulence model. A solution-adaptive mesh refinement technique is used for efficient capturing of the tip vortex. Calculations are performed at several operating conditions with varying collective pitch setting for KUH main rotor blade in hover. Good agreements are obtained between the present and other results using HOST and CAMRAD II in overall rotor performance. It is demonstrated that the present vertex-centered flow solver is an efficient and accurate tool for the assessment of rotor performance in hover.

  • PDF

Flow and Heat Transfer Measurements of Film Injectant from a Row of Holes with Compound Angle Orientations

  • Bumsoo Han;Sohn, Dong-Kee;Lee, Joon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1137-1146
    • /
    • 2002
  • An experiment has been conducted on the flow and heat transfer characteristics of film coolant injected from a row of five holes with compound angle orientations of 35$^{\circ}$ inclination angle and 45$^{\circ}$ orientation angle. The Reynolds number based on the mainstream velocity and injection hole diameter 3.58${\times}$10$^4$. Three-dimensional velocity, film cooling effectiveness and heat transfer coefficient data are presented at three different mass flux ratios of 0.5, 1.0 and 2.0. Flow entrainment has been found between the vortices generated by adjacent injectants. The injectant with compound angle orientation entrains not only the mainstream boundary layer flow but also the adjacent injectant. Because of the flow entrainment, the injectant. With compound angle orientation is characterized by a single vortex while two bound vortices are usually observed in the case of simple angle injection. The strength of the secondary flow depends strongly on the mass flux ratio, which shows significant influence on the film cooling effectiveness and heat transfer coefficient.

LES for Turbulent Duct Flow with Surface Mass Injection and Vortex Shedding (입구 와류발생과 질량분사가 있는 연소실 내부유동의 LES 해석)

  • Mon, Khin Oo;Koo, Hee-Seok;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.9
    • /
    • pp.745-751
    • /
    • 2012
  • Hybrid rocket shows interesting characteristics of complicated mixing layers developed by interactions between turbulent oxidizer flow and mass flow from surface due to fuel vaporization. In this study, compressible LES with a ring structure attached at the entrance of the combustor are performed. According to one recent report, adding a ring structure in the middle of the combustor helps increasing regression rate. From the numerical results, it is seen that vortex structures near the wall becomes stronger due to the interaction with surface mass injection, and the local heat flux increases due to the vortices. This phenomenon is obviously related to the generation of dimple structures which are seen in the number of experiments. Also, the ring structure at the entrance induces strong vortex flow which enhances heat transfer to the wall surface and mixing between fuel and oxidizer as well as reaction efficiency.

Detailed Measurement of Flow and Heat Transfer Downstream of Rectanglar Vortex Generators Using a Transient Liquid Crystal Technique (과도 액정 기법을 이용한 와동발생기 하류의 유동장 및 열전달 측정)

  • Hong, Cheol-Hyun;Yang, Jang-Sik;Lee, Ki-Baik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.11
    • /
    • pp.1618-1629
    • /
    • 2003
  • The effects of the interaction between flow field and heat transfer caused by the longitudinal vortices are experimentally investigated using a five hole probe and a transient liquid crystal technique. The test facility consists of a wind tunnel with vortex generators protruding from a bottom surface and a mesh heater. In order to control the strength of the longitudinal vortices, the angle of attack of vortex generators used in the present experiment is 20$^{\circ}$, and the spacing between the vortex generators is 25mm. The height and cord length of the vortex generator is 20mm and 50mm, respectively. Three-component mean velocity measurements are made using a f-hole probe system, and the surface temperature distribution is measured by the hue capturing method using a transient liquid crystal technique. The transient liquid crystal technique in measuring heat transfer has become one of the most effective ways in determining the full surface distributions of heat transfer coefficients. The key point of this technique is to convert the inlet flow temperature into an exponential temperature profile using the mesh heater set up in the wind tunnel. The conclusions obtained in the present experiment are as follows: The two maximum heat transfer values exist over the whole domain, and as the longitudinal vortices move to the farther downstream region, these peak values show the decreasing trends. These trends are also observed in the experimental results of other researchers to have used the uniform heat flux method.

An Experimental Study on Circulating Flow Around a Submerged Horizontal Plate (잠재 평판 주변에서 발생하는 순환류에 대한 실험적 연구)

  • 이정렬;한상우
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.2
    • /
    • pp.109-121
    • /
    • 2001
  • This paper describes results of an experimental study to examine the effect of a submerged horizontal breakwater to sea water exchange. Flow measurements were taken by using a PIV(Particie Image Velocimetry) system, and mean currents and wave ellipses extracted through the harmonic analysis are presented. As results, the rates of circulating flow were closely connected with the volume flux of incident waves and the counter-rotating vortex pair was observed at the onshore side of a plate. The dye study showed that incoming sea water and polluted water body mixed up significantly due to turbulent motions induced by a jet-like flow.

  • PDF

Experimental Study and Modelling on Membrane Fouling in Taylor Vortex Flow Microfiltration (테일러 와류 정밀여과에서 막오염의 실험적 연구 및 모델링)

  • 박진용;김현우;최창균
    • Membrane Journal
    • /
    • v.13 no.2
    • /
    • pp.88-100
    • /
    • 2003
  • A change of filtrate flux in Taylor vortex flow filtration was investigated experimentally by rotating speed of inner cellulose ester membrane cylinder (average pore size: 1.2 ${\mu}m$), slurry concentration, and particle size. The filtrate flux was a direct proportion relation with TMP, but an inverse relation with resistances. A change of cake resistance with time was examined by rotating speed, slurry concentration, and particle size. Initial resistance increased dramatically as raising slurry concentration, and the pseudo-steady state was maintained at high resistance value. However, times to reach the pseudo-steady state did not depend on slurry concentration. The resistance was larger as smaller particle size, because possibility of pore blocking inside membrane could be higher and shear effect should be lower as smaller particle size. A model equation suggested in this study was composed of particle deposition and removal terms, and could confirm well experimental data using average values of experimental coefficients.

Prediction of Aeroelastic Displacement Under Close BVI Using Unstructured Dynamic Meshes (비정렬 동적격자를 이용한 블레이드-와류 간섭에 따른 공탄성 변위예측)

  • Jo, Kyu-Won;Oh, Woo-Sup;Kwon, Oh-Joon;Lee, In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.37-45
    • /
    • 2002
  • A two-dimensional unsteady, inviscid flow solver has been developed for the simulation of airfoil-vortex interactions on unstructured dynamically adapted meshes. The Euler solver is based on a second-order accurate implicit time integration using a point Gauss-Seidel relaxation scheme and a dual time-step subiteration. A vertex-centered, finite-volume discretization is used in conjunction with the Roe's flux-difference splitting. An unsteady solution-adaptive dynamic mesh scheme is used by adding and deleting mesh points to take account of both spatial and temporal variations of the flow field. The effect of vortex interaction on the aeroelastic displacement of an airfoil attached to the idealized two degree-of-freedom spring system is investigated.