• Title/Summary/Keyword: Vortex Diode

Search Result 4, Processing Time 0.02 seconds

Topology optimization on vortex-type passive fluidic diode for advanced nuclear reactors

  • Lim, Do Kyun;Song, Min Seop;Chae, Hoon;Kim, Eung Soo
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1279-1288
    • /
    • 2019
  • The vortex-type fluidic diode (FD) is a key safety component for inherent safety in various advanced reactors such as the sodium fast reactor (SFR) and the molten salt reactor (MSR). In this study, topology optimization is conducted to optimize the design of the vortex-type fluidic diode. The optimization domain is simplified to 2-dimensional geometry for a tangential port and chamber. As a result, a design with a circular chamber and a restrictor at the tangential port is obtained. To verify the new design, experimental study and computational fluid dynamics (CFD) analysis were conducted for inlet Reynolds numbers between 2000 and 6000. However, the results show that the performance of the new design is no better than the original reference design. To analyze the cause of this result, detailed analysis is performed on the velocity and pressure field using flow visualization experiments and 3-D CFD analysis. The results show that the discrepancy between the optimization results in 2-D and the experimental results in 3-D originated from exclusion of an important pressure loss contributor in the optimization process. This study also concludes that the junction design of the axial port and chamber offers potential for improvement of fluidic diode performance.

A Study on Pressure Drop in Vortex Amplifier (와류증폭기에서의 압력강하에 관한 고찰)

  • Park, Jun Sang
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.29-34
    • /
    • 2017
  • An analysis on pressure drop in vortex amplifier has been performed. Based on theoretical approach with flow physics on well-known firm ground from previous studies, two dimensional flow model, which is very useful to calculate pressure drop of vortex amplifier, is proposed. Parametric studies on inlet and outlet boundary conditions also have been performed so that it found the most influential parameter is the inlet swirl velocity condition. Finally, a simple formulation is given to calculate total pressure drop.

Characteristics of Bubble-driven Flow with Varying Flow Rates by Using Time-resolved PIV and POD Technique (Time-resolved PIV와 POD기법을 이용한 유량에 따른 단일노즐 버블링 유동 특성에 관한 연구)

  • Yi, Seung-Jae;Kim, Jong-Wook;Kim, Hyun-Dong;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.6 no.2
    • /
    • pp.14-19
    • /
    • 2008
  • In this paper, the recirculation flow motion and mixing characteristics driven by air bubble flow in a rectangular water tank is studied. The Time-resolved PIV technique is adopted for the quantitative visualization and analysis. 532 nm Diode CW laser is used for illumination and orange fluorescent particle images are acquired by a PCO 10bit high-speed camera. To obtain clean particle images, 545 nm long pass optical filter and an image intensifier are employed and the flow rates of compressed air is changed from 2 l/min to 4 l/min at 0.5 MPa. The recirculation and mixing flow field is further investigated by the POD analysis technique. It is observed that the large scale counterclockwise rotation and main vortex is generated in the upper half depth from the free surface and one quarter width from the sidewall. When the flow rates are increased, the main vortex core is moved to the side and bottom wall direction.

Electrical power analysis of piezoelectric energy harvesting circuit using vortex current (와류를 이용한 압전 에너지 수확 회로의 전력 분석)

  • Park, Geon-Min;Lee, Chong-Hyun;Cho, Cheeyoung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.2
    • /
    • pp.222-230
    • /
    • 2019
  • In this paper, the power of the energy harvesting circuit using the PVDF (Polyvinylidene fluoride) piezoelectric sensor transformed by vortex was analyzed. For power analysis, a general bridge diode rectifier circuit and a P-SSHI (Parallel Synchronized Switch Harvesting on Inductor) rectifier circuit with a switching circuit were used. The P-SSHI circuit is a circuit that incorporates a parallel synchronous switch circuit at the input of a general rectifier circuit to improve energy conversion efficiency. In this paper, the output power of general rectifier circuit and P-SSHI rectifier circuit is analyzed and verified through theory and experiment. It was confirmed that the efficiency was increased by 69 % through the experiment using the wind. In addition, a circuit for storing the harvested energy in the supercapacitor was implemented to confirm its applicability as a secondary battery.