• Title/Summary/Keyword: Vortex Compression

Search Result 20, Processing Time 0.02 seconds

THE FUNDAMENTAL SHOCK-VORTEX INTERACTION PATTERNS THAT DEPEND ON THE VORTEX FLOW REGIMES

  • Chang, Keun-Shik;Barik, Hrushikesh;Chang, Se-Myong
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.76-85
    • /
    • 2009
  • The shock wave is deformed and the vortex is elongated simultaneously during the shock-vortex interaction. More precisely, the shock wave is deformed to a S-shape, consisting of a leading shock and a lagging shock by which the corresponding local vortex flows are accelerated and decelerated, respectively: the vortex flow swept by the leading shock is locally expanded and the one behind the lagging shock is locally compressed. As the leading shock escapes the vortex in the order of microseconds, the expanded flow region is quickly changed to a compression region due to the implosion effect. An induced shock is developed here and propagated against the vortex flow. This happens for a strong vortex because the tangential flow velocity of the vortex core is high enough to make the induced-shock wave speed supersonic relative to the vortex flow. For a weak shock, the vortex is basically subsonic and the induced shock wave is absent. For a vortex of intermediate strength, an induced shock wave is developed in the supersonic region but dissipated prematurely in the subsonic region. We have expounded these three shock-vortex interaction patterns that depend on the vortex flow regime using a third-order ENO method and numerical shadowgraphs.

A numerical study of the eccentricity effect of the intake valve on the in-cylinder flow field (실린더 내부 유동장에 대한 흡입 밸브의 편심 효과에 관한 수치적 연구)

  • 양희천;최영기;고상근;허선무
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.39-49
    • /
    • 1992
  • Three dimensional numerical calculation carried out to investigate the eccentricity effect of intake valve on the in-cylinder flow fields for the intake stroke and the compression stroke. During the intake stroke, a corner vortex in the vicinity of the valve exit interacted strongly with a toroidal vortex in the case of axisymmetric valve. But a weak interaction between the corner vortex and the toroidal vortex occurred due to the eccentricity of the valve in the narrow region between valve and cylinder wall in the case of offset valve. During the compression stroke, it was found that a solid body rotation was maintained in the radial-circumferential plane in the case of axisymmetric valve. But a weak secondary vortex was formed in the radial-circumferntial plane in the case of offset valve, because of the interaction between swirl flows and inward flows towards cylinder axis. The calculated turbulence intensity presented a similar trend with the experiental results but, in spite of using the modified k-.epsilon. model, it was found that the qualitative difference between the numerical results and experimental results was large in the region where the velocity gradient is substantial.

  • PDF

Assessment of Turbulence Models for Engine Intake and Compression Flow Analysis (엔진 흡입.압축과정의 유동해석을 위한 난류모델의 평가)

  • Park, Kweon-Ha;Kim, Jae-Gon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1129-1140
    • /
    • 2008
  • Many turbulence models have been developed in order to analyze the flow characteristics in an engine cylinder. Watkins introduced k-${\varepsilon}$ turbulence model for in-cylinder flow, and Reynolds modified turbulence dissipation rate by applying rapid transformation theory, Wu suggested k-${\varepsilon}-{\tau}$ turbulence model in which length scale and time scale are separated to introduce turbulence time scale, and Orszag proposed k-${\varepsilon}$ RNG model. This study applied the models to in-cylinder flow induced by intake valve and piston moving. All models showed similar flow fields during early stage of intake stroke. At the end of compression stroke, ${\kappa}-{\varepsilon}$ Watkins, ${\kappa}-{\varepsilon}$ Reynolds and ${\kappa}-{\varepsilon}$ RNG predicted well second and third vortex, especially ${\kappa}-{\varepsilon}$ RNG produced new forth vortex near central axis at the lower part of cylinder which was not predicted by the other models.

A Computational Model on Shock-Vortex Interaction and Acoustic Radiation (충격파-와동 간섭 및 음향 방사에 대한 수치 모델)

  • Chang Se-Myong;Lee Soogab;Chang Keun-Shik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.45-50
    • /
    • 2000
  • We study a conceptual numerical model on shock-vortex interaction setting an impulsive shock in a compressible vertex. Navier-Stokes equations are solved for the investigation of interactive structure and acoustic wave propagation. The rotationally symmetric vortex enforces two compression-expansion pairs resultantly forming a quadrupolar shape. These compressive and expansive waves cylindrically propagate to the far field and turn to acoustic waves. Using a fine uniform Cartesian grid system and a TVD-high resolution method, the flow data irl: precisely obtained to extend our interest to the sound source.

  • PDF

A study on the change of turbulence structure in a diffuser (확대관의 난류구조 변동에 관한 연구)

  • Lee, Jang-Hwan;Han,Yong-Un
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.503-508
    • /
    • 1997
  • The change of the structure of homogeneous turbulence subject to irrotational strains has been studied in an anti-Morel type diffuser (center matched cubic contour) using the hot wire anemometry. It was observed that the profiles of mean velocities and turbulence velocities along the center line were stable at the entrance region but rapidly changed near the matching point. The wall induced turbulence at the entrance region grows fast and was diffused toward the center at downstream. It was also observed that the axial turbulence grows faster than the radial one in the middle region of the diffusing flow and that the diffusing process has the vortex compression mechanism due to the conservation of angular momentum. These phenomena are frequently observed at the initial flow region of the free jet.

Numerical Study on the Shock Wave Scattering Phenomenon Behind a Finite Wedge (유한 쐐기에 의한 충격파 산란 현상의 수치적 연구)

  • Chang Se-Myong;Chang Keun-Shik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.79-84
    • /
    • 1999
  • The shock wave diffracted behind a finite wedge is partially scattered after interacting with a starting vortex originated from the sharp vertex of the wedge. The shock is divided into the accelerated and decelerated shocks. The decelerated shock then interacts with the small vortexlets brought about by the vortex instability, producing weak compression waves. The shock-shock interaction produces Mach stems. Through this successive process, the shock attenuated. In this study, these complicated shock phenomena are computed using Euler equations and compared with experimental results obtained by the authors.

  • PDF

Buzz Suppression of Supersonic Air Inlet by Cowl Position Modification (카울 위치변화에 의한 초음속 공기흡입구의 버즈억제)

  • Shin, Phil-Kwon;Park, Jong-Ho;Lee, Yong-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.10-17
    • /
    • 2005
  • An experimental study was conducted at a Mach number of 2.0 to investigate the buzz suppression method on an axisymmetric, external compression supersonic inlet. The inlet model has a fixed geometry with no internal contraction. The inlet configuration was altered by changing the cowling. Results show that source of buzz has been related to the existence in the flow field of velocity discontinuity across a vortex sheet which originates from a shock intersection point. With external compression inlet, buzz can be suppressed by positioning the oblique shock slightly inside or outside of the cowl.

Numerical study of Three-Dimensional Characteristics of Flow Field and Compression Wave Induced by High Speed Train Entering into a Tunnel (터널에 진입하는 고속전철에 의한 3차원 점성유동과 압축파 특성에 관한 수치해석적 연구)

  • Shin C. H.;Park W. G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.91-98
    • /
    • 2000
  • The three-dimensional unsteady compressible Full Navier-Stokes equation solver with sliding multi-block method has been applied to analyze three dimensional characteristics of the flow field and compression wave around the high speed train which Is entering into a tunnel. The numerical scheme of AF + ADI was used to efficiently solve Navier-Stokes equations in the curvilinear coordinate system. The vortex formation around the nose region was found and the generation of compression wave due to the blockage effects was observed ahead of the train in the form of plane wave. The three dimensional characteristics of the flow field compared to the analytic results were discussed in detail. The variation of pressure of tunnel wall surface and velocity profile of the train are identified as the train enters into a tunnel. The changes in aerodynamic forces and streamlines of each specific sections are also discussed and presented.

  • PDF

Numerical study of Three-Dimensional Viscous Flow and Compression Wave Induced by the High Speed Train Entering into a Tunnel (터널에 진입하는 고속전철 주위의 3차원 점성유동과 압축파 특성에 관한 수치해석적 연구)

  • Shin C. H.;Park W. G.
    • Journal of computational fluids engineering
    • /
    • v.5 no.3
    • /
    • pp.23-31
    • /
    • 2000
  • The three-dimensional unsteady compressible Full Navier-Stokes equation solver with sliding multi-block method has been applied to analyze three dimensional characteristics of the viscous flow field and compression wave around the high speed train which is entering into a tunnel. The numerical scheme of AF + ADI was used to efficiently solve Navier-Stokes equations in the curvilinear coordinate system. The vortex formation owing to the viscous interaction around the train was found and the generation of compression wave due to the blockage effects was observed ahead of the train in the form of plane wave. The three dimensional characteristics of the flow field compared to the analytic results were discussed in detail. The variation of pressure of tunnel wall surface and velocity profile of the train are identified as the train enters into a tunnel. The changes in aerodynamic forces and streamlines of each specific sections are also discussed.

  • PDF

A Numerical Study on In-cylinder Flow Fields of an Axisymmetric Engine (축대칭 엔진 실린더내의 유동장에 관한 수치적 연구)

  • 최재성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.662-670
    • /
    • 1999
  • A numerical prediction was performed to clarify the air motion in the cylinder of an axisymmet-ric four-stroke reciprocating engine at its intake and compression stage. A scheme of finite volume method is used for the calculation. Modified $k-{\varepsilon}$ turbulence model is adopted and wall function is applied to the grids near the wall. The predicted mean velocity and rms velocity profiles showed a reasonable agreement with an available experimental data at its intake and compression stage. The predicted in-cylinder flow fields show that a strong turbulent twin vortex structure is pro-duced during induction but it commences to decay rapidly around inlet valve closure. The mean velocity continues to fall to a low level during compression but the turbulence intensity attains an approximate constant level.

  • PDF