• Title/Summary/Keyword: Voronoi Distance

Search Result 25, Processing Time 0.018 seconds

Mosaics using Adaptive Tile Size (적응적 타일크기를 이용한 모자이크)

  • Han, Myoung-Hun;Yoon, Kyung-Hyun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10b
    • /
    • pp.167-171
    • /
    • 2007
  • 본 논문에서는 타일의 크기를 적응적으로 결정하는 모자이크 방법을 제안한다. 우리는 이미지에서 에지(Edge)를 추출한 뒤, 결과 영상이 이 에지 정보를 보존하고, 각 타일들이 이 에지를 따르도록 한다. 에지 정보를 보존 하기 위하여 무게중심 보로노이 다이어그램(CVD: Centroidal Voronoi Diagram)을 계산할때 에지 회피기법을 적용하며, 에지를 따르는 타일을 생성하기 위하여 에지를 따르는 방향과 맨해튼 거리(manhattan distance)가 적용된 무게중심 보로노이 다이어그램을 사용한다. 이때, 우리는 그래픽 처리 장치(GPU: Graphics Processing Unit)를 이용하여 방향맵이나 보로노이 다이어그램을 더욱 빠르게 구할 수 있다. 우리는 타일의 크기를 각 보로노이 영역의 넓이에 비례하게 정함으로써, 기존의 모자이크 방법들이 해결하고자 했던 타일의 겹침 문제와 타일간의 빈 공간 문제를 개선하였다.

  • PDF

Patient-Specific Mapping between Myocardium and Coronary Arteries using Myocardial Thickness Variation

  • Dongjin Han
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.187-194
    • /
    • 2024
  • For precise cardiac diagnostics and treatment, we introduce a novel method for patient-specific mapping between myocardial and coronary anatomy, leveraging local variations in myocardial thickness. This complex system integrates and automates multiple sophisticated components, including left ventricle segmentation, myocardium segmentation, long-axis estimation, coronary artery tracking, and advanced geodesic Voronoi distance mapping. It meticulously accounts for variations in myocardial thickness and precisely delineates the boundaries between coronary territories according to the conventional 17-segment myocardial model. Each phase of the system provides a step-by-step approach to automate coronary artery mapping onto the myocardium. This innovative method promises to transform cardiac imaging by offering highly precise, automated, and patient-specific analyses, potentially enhancing the accuracy of diagnoses and the effectiveness of therapeutic interventions for various cardiac conditions.

Estimation of optimal position of a mobile robot using object recognition and hybrid thinning method (3차원 물체인식과 하이브리드 세선화 기법을 이용한 이동로봇의 최적위치 추정)

  • Lee, Woo-Jin;Yun, Sang-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.6
    • /
    • pp.785-791
    • /
    • 2021
  • In this paper, we propose a methodology for estimating the optimal traversable destination from the location-based information of the object recognized by the mobile robot to perform the object delivery service. The location estimation process is to apply the generalized Voronoi graph to the grid map to create an initial topology map composed of nodes and links, recognize objects and extract location data using RGB-D sensors, and collect the shape and distance information of obstacles. Then, by applying the hybrid approach that combines the center of gravity and thinning method, the optimal moving position for the service robot to perform the task of grabbing is estimated. And then, the optimal node information for the robot's work destination is updated by comparing the geometric distance between the estimated position and the existing node according to the node update rule.

A MapReduce-based kNN Join Query Processing Algorithm for Analyzing Large-scale Data (대용량 데이터 분석을 위한 맵리듀스 기반 kNN join 질의처리 알고리즘)

  • Lee, HyunJo;Kim, TaeHoon;Chang, JaeWoo
    • Journal of KIISE
    • /
    • v.42 no.4
    • /
    • pp.504-511
    • /
    • 2015
  • Recently, the amount of data is rapidly increasing with the popularity of the SNS and the development of mobile technology. So, it has been actively studied for the effective data analysis schemes of the large amounts of data. One of the typical schemes is a Voronoi diagram based on kNN join algorithm (VkNN-join) using MapReduce. For two datasets R and S, VkNN-join can reduce the time of the join query processing involving big data because it selects the corresponding subset Sj for each Ri and processes the query with them. However, VkNN-join requires a high computational cost for constructing the Voronoi diagram. Moreover, the computational overhead of the VkNN-join is high because the number of the candidate cells increases as the value of the k increases. In order to solve these problems, we propose a MapReduce-based kNN-join query processing algorithm for analyzing the large amounts of data. Using the seed-based dynamic partitioning, our algorithm can reduce the overhead for constructing the index structure. Also, it can reduce the computational overhead to find the candidate partitions by selecting corresponding partitions with the average distance between two seeds. We show that our algorithm has better performance than the existing scheme in terms of the query processing time.

A Hybrid Genetic Algorithm Using Epistasis Information for Sequential Ordering Problems (서열순서화문제를 위한 상위정보를 이용하는 혼합형 유전 알고리즘)

  • Seo Dong-Il;Moon Byung-Ro
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.661-667
    • /
    • 2005
  • In this paper, we propose a new hybrid genetic algorithm for sequential ordering problem (SOP). In the proposed genetic algorithm, the Voronoi quantized crossover (VQX) is used as a crossover operator and the path-preserving 3-Opt is used as a local search heuristic. VQX is a crossotver operator that uses the epistasis information of given problem instance. Since it is a crossover proposed originally for the traveling salesman problem (TSP), its application to SOP requires considerable modification. In this study, we appropriately modify VQX for SOP, and develop three algorithms, required in the modified VQX, named Feasible solution Generation Algorithm, Precedence Cycle Decomposition Algorithm, and Genic Distance Assignment Method. The results of the tests on SOP instances obtained from TSPLIB and ZIB-MP-Testdata show that the proposed genetic algorithm outperforms other genetic algorithms in stability and solution quality.