• Title/Summary/Keyword: Volumetric model

Search Result 427, Processing Time 0.023 seconds

Wear Debris Identification of the Lubricated Machine Surface with Neural Network Model (신경회로망 모델을 이용한 기계윤활면의 마멸분 형태식별)

  • 박홍식;서영백;조연상
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.3
    • /
    • pp.133-140
    • /
    • 1998
  • The neural network was applied to identify wear debris generated from the lubricated machine surface. The wear test was carried out under different experimental conditions. In order to describe characteristics of debris of various shapes and sizes, the four shape parameter(50% volumetric diameter, aspect, roundness and reflectivity) of wear debris are used as inputs to the network and learned the friction condition of five values(material 3, applied load 1, sliding distance 1). It is shown that identification results depend on the ranges of these shape parameter learned. The three kinds of the wear debris had a different pattern characteristics and recognized the friction condition and materials very well by neural network.

  • PDF

Thermal-hydraulic behavior simulations of the reactor cavity cooling system (RCCS) experimental facility using Flownex

  • Marcos S. Sena;Yassin A. Hassan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3320-3325
    • /
    • 2023
  • The scaled water-cooled Reactor Cavity Cooling System (RCCS) experimental facility reproduces a passive safety feature to be implemented in Generation IV nuclear reactors. It keeps the reactor cavity and other internal structures in operational conditions by removing heat leakage from the reactor pressure vessel. The present work uses Flownex one-dimensional thermal-fluid code to model the facility and predict the experimental thermal-hydraulic behavior. Two representative steady-state cases defined by the bulk volumetric flow rate are simulated (Re = 2,409 and Re = 11,524). Results of the cavity outlet temperature, risers' temperature profile, and volumetric flow split in the cooling panel are also compared with the experimental data and RELAP system code simulations. The comparisons are in reasonable agreement with the previous studies, demonstrating the ability of Flownex to simulate the RCCS behavior. It is found that the low Re case of 2,409, temperature and flow split are evenly distributed across the risers. On the contrary, there's an asymmetry trend in both temperature and flow split distributions for the high Re case of 11,524.

Plasticity Model Using Three Orthogonal Stress Components for Concrete in Compression (압축력을 받는 콘크리트에 대한 세 직교 응력 성분을 이용한 소성 모델)

  • Kim Jae-Yo;Park Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.345-356
    • /
    • 2004
  • A plasticity model was developed to predict the behavioral characteristics of concrete in multiaxial compression. To extend the applicability of the proposed model to concrete in various stress states, a new approach for failure criteria was attempted. A stress was decomposed into one volumetric and two deviatoric components orthogonal to each other. Three failure criteria wire provided independently for each stress component. To satisfy the three failure criteria, the plasticity model using multiple failure criteria was Implemented. Each failure surface was defined by equivalent volumetric or deviatoric plastic strain. To present dilatancy due to compressive damage a non-associative flow nile was proposed. The proposed model was implemented to finite element analysis, and it was verified by comparisons with various existing test results. The comparisons show that the proposed model predicted well most of the experiments by using three independent failure criteria.

Modeling for the Prediction of Liquid Food Density (액체식품의 밀도예측을 위한 모델링)

  • Choi, Yong-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.133-139
    • /
    • 1988
  • For the development of a general mathermatical model to predict the density of liquid foods based on temperature and composition of each major component, the major components of liquid foods considered in this study were water, protein, fat, carbohydrate, fiber and ash. These samples were subdivided into sixteen pure components. The density of each sample was measured by a volumetric pycnometer at the temperature range of $0^{\circ}C\;to\;100^{\circ}C$ for three different solid content suspensions, The density values of pure component solids were calculated from the assumed model at given temperature, using the experimental values of three different solid content suspensions with known water fraction and density model of water. Using these calculated density data at the temperature range of $0^{\circ}C\;to\;100^{\circ}C$, the coefficients of ther density model for each pure component were determined by the OPT Subroutine Program. The density model developed in this study can be used to predict the density values of liquid foods at given temperature and composition.

  • PDF

A Study on the Effect of Exhaust Manifold Configuration on Engine Performance in a 4 Cylinder 4 Cycle Gasoline Engine (4실린더 4사이클 가솔린기관에서 배기계의 형상이 기관성능에 미치는 영향에 관한 연구)

  • 정수진;김태훈;조진호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.751-767
    • /
    • 1994
  • Recent developments of S.I. engine, aiming to higher power, better fuel economy, lower air pollution and better driveability, have much focused on the importance of the role of computer simulation in engine research and development. In this point of view, improving engine performance requires finding some means to improve volumetric efficiency. Up to now there have been several attempts to optimize the intake and exhaust system of internal system of S.I. engine by computer simulation. There appear to be few studies available, however, of such simulation & experimental studies applied to the optimization of exhaust manifold configuration. In this study, gas exchange & power process of 4 cylinder S.I. Engine was studies numerically & experimentally, and governing equation of a one-dimensional unsteady compressible flow and combustion process were respectively solved by a characteristics method and 2-zone model. The aim of this study is to predict and investigate the influence of pressure wave interaction at the exhaust systems on engine performance with widely differing exhaust manifold configuration.

Bioreactor Operating Strategy in Scultellaria baicalensis G. Plant Cell Culture for the Production of Flavone Glycosides (Flavonoid 배당체 생산을 위한 Scutellaria baicalensis G. 식물 세포 배양에서 생물반응기 운전전략)

  • 최정우;조진만;이정건;이원홍;김익환;박영훈
    • KSBB Journal
    • /
    • v.13 no.3
    • /
    • pp.259-267
    • /
    • 1998
  • Optimal feeding strategies in bioreactor operation of Scutellaria baicalensis G. plant cell culture were investigated to maximize the production of flavone glycosides by using a structured kinetic model which can predict culture growth and flavone glycosides synthesis in a rigorous, quantitative manner. For the production of baicalin and wogonin-7-0-GA, the strategies for glucose feeding into Scutellaria baicalensis G. plant cell culture were proposed based on the model, which are a periodic fed-batch operation with maintenance of cell viability and of specific production rate respectively, and a perfusion operation with maintenance of specific production rate for baicalin and wogonin-7-0-GA. Simulation results showed that the highest volumetric concentration of flavone glycosides was obtained in a periodic fed-batch operation with maintenance of cell viability among all the suggested strategies. In the periodic fed-batch operations, the higher volumetric production of flavone glycosides was achieved compared with that in the perfusion operation. It can be concluded that a periodic fed-batch operation with maintenance of cell viability would be the optimal and practical operating strategy of Scutellaris baicalensis G. plant cell culture for the production of flavone glycosides.

  • PDF

Analysis of Scattered Fields Using High Frequency Approximations (고주파수 근사 이론을 이용한 결함으로부터의 초음파 산란장 해석)

  • Jeong, Hyun-Jo;Kim, Jin-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.2
    • /
    • pp.102-109
    • /
    • 2000
  • This paper describes two different theories used to model the scattering of ultrasound by a volumetric flaw and a crack-like flaw. The elastodynamic Kirchhoff approximation (EKA) and the geometrical theory of diffraction (GTD) are applied respectively to a cylindrical cavity and a semi-infinite crack. These methods are known as high frequency approximations. The 2-D elastodynamic scattering problems of a plane wave incident on these model defects are considered and the scattered fields are expressed in terms of the reflection and diffraction coefficients. The ratio of the scattered far field amplitude to the incident wave amplitude is computed as a function of the angular location and compared with the boundary element solutions.

  • PDF

Probabilistic Fiber Strength of Composite Pressure Vessel (복합재 압력용기의 확률 섬유 강도)

  • 황태경;홍창선;김천곤
    • Composites Research
    • /
    • v.16 no.6
    • /
    • pp.1-9
    • /
    • 2003
  • In this paper, probabilistic failure analysis based on Weibull distribution function is proposed to predict the fiber strength of composite pressure vessel. And, experimental tests were performed using fiber strand specimens, unidirectional laminate specimens and composite pressure vessels to confirm the volumetric size effect on the fiber strength. As an analytical method, the Weibull weakest link model and the sequential multi-step failure model are considered and mutually compared. The volumetric size effect shows the clearly observed tendency towards fiber strength degradation with increasing stressed volume. Good agreement of fiber strength distribution was shown between test data and predicted results for unidirectional laminate and hoop ply in pressure vessel. The site effect on fiber strength depends on material and processing factors, the reduction of fiber strength due to the stressed volume shows different values according to the variation of material and processing conditions.

Performance Analysis of Swash Plate Type Compressor on the Inclined Angle of Swash Plate (사판의 경사각도 변화에 따른 사판식 압축기의 성능해석)

  • Lee, Geon Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.215-220
    • /
    • 2002
  • This paper describes a simulation model for estimation the performance of the swash plate type compressor for automotive air conditioning system. The model includes consideration of both the compression process and the dynamic behavior. Also, this study compares the results obtained from the performance simulation with experimental results. Further, the effects of the inclined angle of swash plate on the performance of swash plate type compressor are discussed.

  • PDF

Incremental Feature Recognition from Feature-based Design Model (설계특징형상으로부터 가공특징형상 추출)

  • 이재열;김광수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.737-742
    • /
    • 1994
  • In this paper , we propose an incremental approach for recognizing a class of machining features from a featurebased design model as a part design proceeds, utilizing various information such as nominal geometry, design intents, and design feature characteristics. The proposed apptroach can handle complex intersecting features and protrusion features designed on oblique faces. The class of recognized volumetric machining features can be expressed as Material Removal Shape Element Volumes (MRSEVs), a PDES/STEP-based library of machining features.

  • PDF