• Title/Summary/Keyword: Volumetric errors

Search Result 79, Processing Time 0.027 seconds

Improvement of the Volumetric Interferometer using a Lateral Shearing Interferometer (층밀림 간섭계를 이용한 부피간섭계의 개선)

  • Chu J.;Kim S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.208-211
    • /
    • 2005
  • The volumetric interferometer, which uses the interference of wavefronts emitted from two single mode fibers, measures the target position in 3-D. In this paper, we suggest a new calculation method which doesn't need a non-linear optimization and an initial guess. We find the relationship between the coefficients of the Zernike polynomials for a spherical wavefront and its center and reconstruct a spherical wavefront by using the Zernike polynomials from two interference fringes like a lateral shearing interferometer. The target position can be obtained from the coefficients of the Zernike polynomials of the reconstructed wavefront. We can get the target position in 3-D with $sub-{\mu}m$ errors in a simulation.

  • PDF

Analysis of inter-fraction and intra-fraction errors during volumetric modulated arc therapy in Pancreas Ca (호흡 동조 췌장 암 용적 세기조절 회전 치료 시 Inter-fraction Intra-fraction 분석)

  • Jo, Young Pil;Seo, Dong Rin;Hong, Taek Kyun;Kang, Tae Yeong;Beck, Geum Mun;Hong, Dong Ki;Yun, In Ha;Kim, Jin San
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.247-256
    • /
    • 2014
  • Purpose : To assess target motion during radiotherapy by quantifying daily setup errors and inter-fractional and intra-fractional movements of pancreatic fiducials. Materials and Methods : Eleven patients were treated via stereotactic body radiotherapy (SBRT) with volumetric modulated arc therapy. Bony setup errors were calculated using cone beam computed tomography (CBCT). Inter-fractional and intrafractional fiducial (seed) motion was determined via cone beam computed tomography (CBCT) projections and orthogonal fluoroscopy. Results : Using an off-line correction protocol, setup errors were 0.0 (-1.7-4.0), 0.3 (-0.5-3.0), and 0.0 (-4.1-6.6) mm for the left-right, anterior-posterior, and superior-inferior directions respectively. Random inter-fractional setup errors in the mean fiducial positions were -0.1, -1.1, and -2.3 mm respectively. Intra-fractional fiducial margins were 9.9, 7.8, and 12.5 mm, respectively. Conclusion : Online inter-fractional and intra-fractional corrections based on daily kV images and CBCT expedites SBRT of pancreatic cancer. Importantly, inter-fractional and intra-fractional motion needs to be measured regularly during treatment of pancreatic cancer to account for variations in patient respiration.

Measurement Method for Geometric Errors of Ultra-precision Roll Mold Machine Tool: Simulation (초정밀 롤 금형 가공기의 기하학적 오차 측정 방법: 모의실험)

  • Lee, Kwang-Il;Yang, Seung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.10
    • /
    • pp.1087-1093
    • /
    • 2013
  • In this study, a measurement method of double ball-bar is proposed to measure the geometric errors of an ultra-precision roll mold machine tool. A volumetric error model of the machine tool is established to investigate the effects of the geometric errors to a radius error and a cylindricity of the roll mold. A measurement path is suggested for the geometric errors, and a ball-bar equation is derived to represent the relation between the geometric errors and a measured data of the double ball-bar. Set-up errors, which are inevitable at the double ball-bar installation, also are analyzed and are removed mathematically for the measurement accuracy. In addition, standard uncertainty of the measured geometric errors is analyzed to determine the experimental condition. Finally, the proposed method is tested and verified through simulation.

Modeling and Measurement of Thermal Errors for Machining Center using On-Machine Measurement System (기상계측 시스템을 이용한 머시닝센터의 열변형 오차 모델링 및 오차측정)

  • 이재종;양민양
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.120-128
    • /
    • 2000
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric errors, thermally-induced errors, and the deterioration of the machine tools. Geometric and thermal errors of machine tools should be measured and compensated to manufacture high quality products. In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. This paper models of the thermal errors for error analysis and develops on-the-machine measurement system by which the volumetric error are measured and compensated. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindle unit which are measured by the touch probe unit with a star type styluses and a designed spherical ball artifact (SBA). Experiments, performed with the developed measurement system, show that the system provides a high measuring accuracy, with repeatability of $\pm$2${\mu}{\textrm}{m}$ in X, Y and Z directions. It is believed that the developed measurement system can be also applied to the machine tools with CNC controller. In addition, machining accuracy and product quality can be improved by using the developed measurement system when the spherical ball artifact is mounted on the modular fixture.

  • PDF

Thermal Deformation Characteristics of the Adaptive Machine Tools under Change of Thermal Environment (열적 환경변화에 의한 공작기계의 구조적 특성)

  • 이재종;이찬홍;최대봉;박현구
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.1023-1027
    • /
    • 2000
  • In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. This paper models of the thermal errors for error analysis and develops on-the-machine measurement system by which the volumetric error are measured and compensated. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindle unit which are measured by the touch probe unit with a star type styluses, a designed spherical ball artifact, and five gap sensors. In order to analyze the thermal characteristics under several operating conditions, experiments performed with the touch probe unit and five gap sensors on the vertical and horizontal machining centers.

  • PDF

Improvement of Accuracy for Determination of Hydrogen Storage of Sieverts Apparatus (부피법을 이용한 수소 저장 성능 평가 장치의 수소 저장량 측정법 개선)

  • Cho, Won-Chul;Han, Sang-Sub;Park, Chu-Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.1
    • /
    • pp.64-70
    • /
    • 2008
  • This paper briefly discusses the main sources of errors and their solutions for measuring hydrogen uptake from gas phase by the Sieverts technique. Correction of volumetric errors of apparatus, density of hydrogen storage material, estimation of temperature gradient are investigated. Systematic errors and the change of density of the host material according to the pressure have been the subject of much controversy in recent years. We considered the standard ball calibration, temperature gradient distribution, pretreatment of hydrogen storage materials to minimize errors. We could lessen the miscalculations after applying those methods to Equilibrium pressure-composition isotherm data.

Characteristics Analysis and Compensation of Thermal Deformation for Machine Tools with respect to Operating Conditions (작업조건에 따른 공작기계의 열변형 특성 해석 보정)

  • 이재종;최대봉;박현구;곽성조
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.4
    • /
    • pp.70-75
    • /
    • 2001
  • In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. This paper models of the thermal errors for error analysis and develops on-the-machine measurement system by which the volumetric error are measured and compensated. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindel unit which are measured by the touch probe unit with a star type styluses, a designed spherical ball arti-fact, and five gap sensors. In order to analyze the thermal characteristics under several operating conditions, experiments performed with the touch probe unit and five gap sensors on the vertical and horizontal machining centers.

  • PDF

Characteristics Analysis of Thermal Deformation for Machine Tools with respect to Operating Conditions (작업조건에 따른 공작기계의 열변형 특성 해석)

  • 이재종;최대봉;박현구;곽성조;박홍석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.449-453
    • /
    • 2000
  • In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. This paper models of the thermal errors for error analysis and develops on-the-machine measurement system by which the volumetric error are measured and compensated. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindle unit which are measured by the touch probe unit with a star type styluses, a designed spherical ball artifact, and five gap sensors. In order to analyze the thermal characteristics under several operating conditions, experiments performed with the touch probe unit and five gap sensors on the vertical and horizontal machining centers.

  • PDF