• Title/Summary/Keyword: Volumetric Pressure Plate Extractor (VPPE)

Search Result 5, Processing Time 0.022 seconds

Study on the Improvement for Measuring Procedures of Volumetric Pressure Plate Extractor (체적압력판추출기의 측정법 개선에 관한 연구)

  • Yoo, Kun-Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4C
    • /
    • pp.185-191
    • /
    • 2010
  • Volumetric pressure plate extractor (VPPE) can be used for measurement of the soil-water characteristic curve in the laboratory using the axis-translation technique. The volume of extracted water from the soil specimen in VPPE can be measured continuously during the test without stoppage of air pressure for the measurements. However, the water volume measurement in VPPE using an air trap, a ballast tube, a burette, and a vacuum device so as to maintain a constant pore-water pressure in the soil specimen, is quite complicated and tedious. In order to improve the measuring problems of VPPE, a modified volumetric pressure plate extractor (MVPPE) was developed and tested on residual soil specimens. In addition, the modified apparatus can measure the volume of the extracted water using both Method A and Method B of ASTM D 6836-02 depending on the range of matric suction. Measuring principles and the improvements of MVPPE and typical results obtained from the tests are discussed in the paper.

Soil Water Characteristic Curve Using Volumetric Pressure Plate Extractor Incorporated with TDR System (TDR 측정시스템이 도입된 압력판 추출 시험기를 이용한 흙-함수특성곡선 연구)

  • Jung, Young-Seok;Sa, Hee-Dong;Kang, Seonghun;Oh, Se-Boong;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.8
    • /
    • pp.17-28
    • /
    • 2015
  • The purpose of this study is to measure the volumetric water content of unsaturated soils during drying and wetting process by using volumetric pressure plate extractor (VPPE) incorporated with time domain reflectometry (TDR). The VPPE consists of a pressure cell, a pressure regulator, a burette system and a TDR probe. Two samples with different initial void ratios were prepared in the pressure cell, and the air pressure at the range of 0.1 kPa - 50 kPa was applied to adjust the matric suction by the pressure regulator. The burette system was used to measure the volumetric water content change of the sample according to the matric suction. In addition, the TDR probe, installed in the cell, was used to evaluate the dielectric constant from the reflected signal of the electromagnetic wave at the probe. The volumetric water content of specimen was estimated by the empirical equation between the volumetric water content and dielectric constant, which was calibrated with the Jumunjin sand. The test results show that the volumetric water content calculated by TDR probe is strongly correlated to the measured value by burette system. The hysteresis occurs during drying and wetting process. Furthermore, the degree of hysteresis reduces in the repeated process. This study suggests that TDR may be effectively used to evaluate the water content soil for the determination of water characteristic curve of unsaturated soils.

Development of VPPE-BE Testing System to Evaluate Modulus under Post-Compaction Variation in Matric Suction for Unsaturated Compacted Soils (다짐지반의 모관흡수력 변화에 따른 탄성계수 평가를 위한 VPPE-BE 시험 시스템 개발)

  • Lee, Sei-Hyun;Seo, Won-Seok;Choo, Yun-Wook;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.117-127
    • /
    • 2008
  • The volumetric pressure plate extractor (VPPE) was modified for the measurement of shear wave velocity ($V_s$) at various levels of matric suction as well as soil water characteristic curve (SWCC). A non-destructive technique with a pair of bender element (BE) was employed in order to measure the $V_s$ and the corresponding maximum shear modulus ($G_{max}$) of unsaturated soil specimens. Three types of soil were collected from different road construction sites in Korea. For all test soils, the variations in $G_{max}$ with the various levels of water content and matric suction were investigated using the developed apparatus. Compared with the preceding results from the suction-controlled torsional shear (TS) testing system and in-situ seismic tests, the feasibility fur evaluating modulus characteristics of unsaturated compacted soils with the developed VPPE-BE system was assessed. It was confirmed that the newly developed system would be potentially helpful in modeling seasonal variation of modulus.

A Study on the Acquisition Technique of Water Retention Characteristics Based on the Evaporation Method and the Chilled Mirror Method for Unsaturated Soils (증발법과 냉각거울법에 의한 불포화토의 함수특성 획득기법 연구)

  • Oh, Seboong;Yoo, Younggeun;Park, Gyusoon;Kim, Seongjin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.4
    • /
    • pp.11-20
    • /
    • 2022
  • In order to acquire hydraulic characteristics for unsaturated layers, water retention tests were performed and compared by using the evaporation method, volumetric pressure plate extractor (VPPE) and chilled-mirror dew point method. The evaporation and chilled-mirror method are currently developed experimental technology and measure the water retention curve of unsaturated soils quickly and accurately. In the evaporation and VPPE method, the water retention has been measured and compared until 100kPa matric suction and consequently the result of the evaporation method could be verified. In the chilled-mirror method, the water retention has been measured until high level of matric suction and the overall shape of water retention curves could be obtained. As a result of water retention tests, the representative water retention curves were obtained and the applicability of each test method was discussed. Using both the evaporation and chilled-mirror methods, the soil water retention curve can be acquired reasonably for the whole range of matric suction.

Effect of apparent cohesion in unsaturated soils on the ground behavior during underground excavation (불포화토 겉보기 점착력이 지하굴착시 거동에 미치는 영향)

  • Lee, In-Mo;Jung, Jee-Hee;Kim, Kyung-Ryeol;Kim, Do-Hoon;Hyun, Ki-Chang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.2
    • /
    • pp.117-127
    • /
    • 2010
  • Gound excavation is frequently executed in unsaturated soil conditions. In this paper, the effect of apparent cohesion in unsaturated soils on the ground behavior during underground excavation is studied. The VPPE (Volumetric Pressure Plate Extractor) test, the unsaturated triaxial test and the trap-door test were carried out to figure out how the behavior of soils varies depending on the variation of apparent cohesion. The test results show that the ground behavior is almost identical if the soil is either fully dry or fully saturated. However, if the soil is partially-saturated with the increase of water content, the ground behaves quite differently. In summary, the apparent cohesion in unsaturated soils plays key roles when excavating underground structures.