• Title/Summary/Keyword: Volume size

Search Result 3,218, Processing Time 0.031 seconds

The calculation of stress-strain behavior of Ti-10V-2Fe-3Al alloys (Ti-10V-2Fe-3Al 합금의 응력-변형거동 계산)

  • 오택열
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.38-47
    • /
    • 1989
  • The Finite Element Method has been employed to calculate the effect of particle size, matrix, and volume fractions on the stress-strain relations of .alpha.-.betha. titanium alloys. It was found that for a given volume fraction, the calculated stress-strain curve was higher for a finer particle size than for a coarse particle size within the range of the strains considered, and this behavior was seen for all the different volume fraction alloys considered. The calculated stress-strain curves for three vol. pct .alpha. alloys were compared with their corresponding experimental curve, and in general, good agreement was found.

  • PDF

Effects of Initial Inoculum Size, Liquid Volume and Medium Feeding Strategy on Panax ginseng Hairy Roots Growth

  • Jeong, Gwi-Taek;Park, Don-Hui;Hwang, Baek
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.250-253
    • /
    • 2000
  • We researched effects of growth on initial inoculum size, liquid volume, and medium feeding rate etc. Cell suspension inoculated at low cell concentrations showed a typical growth reduction, whereas root cultures showed an improvement in growth. In this paper, Hairy roots showed high growth rate at 0.4 % inoculum size and 100 mL liquid volume in 250 mL flask cultures.

  • PDF

Effect of Slag Particle Size and Volume Fraction on Mechanical Properties of Slag Reinforced Composite (슬래그 입자의 크기 및 체적비에 따른 슬래그 입자강화 복합재료의 기계적 특성 연구)

  • Nam, Ji-Hoon;Chun, Heoung-Jae;Hong, Ik-Pyo
    • Composites Research
    • /
    • v.26 no.4
    • /
    • pp.218-222
    • /
    • 2013
  • This study demonstrated that a slag, an industrial solid waste, can be used as a structural reinforcement. The mechanical properties(tensile strength and Elastic modulus) of slag reinforced composite(SRC) was investigated as functions of slag particle size (8~12 ${\mu}m$ and 12~16 ${\mu}m$) and volume fraction (0-40 vol.%). In order to investigate the interface and a degree of particle dispersion which have an effect on mechanical properties, optical microscopic images were taken. The results of tensile tests showed that the tensile strength decreased with an increase in slag volume fraction and particle size. The elastic modulus increased with an increase in slag volume fraction and particle size except for 30 vol.% SRC. The tensile strength decreased with an increase in slag particle size. The microscopic picture showed SRC has fine degree of particle dispersion at low slag volume fraction. SRC has a good interface at every volume fraction. However particle cluster was incorporated with an increase in slag volume fraction.

Bounding volume estimation algorithm for image-based 3D object reconstruction

  • Jang, Tae Young;Hwang, Sung Soo;Kim, Hee-Dong;Kim, Seong Dae
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.2
    • /
    • pp.59-64
    • /
    • 2014
  • This paper presents a method for estimating the bounding volume for image-based 3D object reconstruction. The bounding volume of an object is a three-dimensional space where the object is expected to exist, and the size of the bounding volume strongly affects the resolution of the reconstructed geometry. Therefore, the size of a bounding volume should be as small as possible while it encloses an actual object. To this end, the proposed method uses a set of silhouettes of an object and generates a point cloud using a point filter. A bounding volume is then determined as the minimum sphere that encloses the point cloud. The experimental results show that the proposed method generates a bounding volume that encloses an actual object as small as possible.

Particle Size Control of Poly(Lactide-co-Glycolide) Microspheres for Oral Antigen Delivery Systems (경구용 항원 수송체 모델로서 폴리락티드-글리콜리드 마이크로스피어의 입자도 조절)

  • Song, Il-Yong;Song, Seo-Hyun;Song, Woo-Heon;Cho, Seong-Wan;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.29 no.4
    • /
    • pp.315-321
    • /
    • 1999
  • Poly (lactide-co-glycolide) (PLGA) microspheres containing ovalbumin (OVA) as a model protein drug were prepared by double emulsification method, and various conditions such as mixing rate, volume of outer phase and isopropyl alcohol concentration in outer phase during secondary emulsification were observed to control the size of microspheres. In addition, entrapment efficiency of OVA and protein denaturation were also evaluated. As the rate of stirring was increased, the size of particles was decreased. But excessive stirring increased the particle size of microspheres. In a preparation condition of small volume of outer phase, the particle size was decreased but the entrapment efficiency was increased. Adding isopropyl alcohol to outer phase decreased the size of particles, but increased the entrapment efficiency. Microparticles should have smaller size than $10\;{\mu}m$ to be uptaked by Peyer's patch in small intestine. High speed of mixing and relatively small volume of outer phase are needed to reduce the size. In addition, appropriate amount of isopropyl alcohol in outer phase also plays an important role in size reduction of PLGA microspheres.

  • PDF

The Analysis of the Micro-structure of Oxygen Plasma Treated PET Using a Nitrogen Porosimeter (Nitrogen Porosimeter를 이용한 산소 플라즈마 처리 PET의 미세구조 분석)

  • 김병인;김태경;조규민;임용진
    • Textile Coloration and Finishing
    • /
    • v.11 no.6
    • /
    • pp.1-6
    • /
    • 1999
  • The porosities of PET fibers were investigated using a nitrogen porosimeter according to oxygen plasma treatment and dyeing with a disperse dye, and they were discussed in terms of the change of internal micro-structure of the PET fiber. The total pore volume, surface area and average pore size of the plasma treated PET fibers increased expectably compared with the untreated sample. The PET fibers treated with oxygen plasma and then dyed with a disperse dye were increased significantly in the surface area and the total pore volume comparing with those of plasma treated only, but decreased in the average pore size. The increase of the surface area, after dyeing, of the plasma treated PET fibers was due to addition of the surface area of the dye itself to that of the PET fiber. The increase of the total pore volume of the plasma treated PET fibers by dyeing, which is the opposite result to the general idea that the pore volume of fibers would be reduced by occupation of dye molecules in the pores, could be explained by the free-volume model. This is that the amorphous region in the fiber expanded by occupation of dye molecules, and the marginal space surrounding dyes was generated as many smaller pores, and the decrease of the average pore size of the dyed sample also could be explained The decrease of the average pore size was caused by the splitting of a larger pore into smaller pores.

  • PDF

Structure of a single polymer chain confined in a dense array of nanoposts

  • Joo, Heesun;Kim, Jun soo
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.48-52
    • /
    • 2015
  • Control of polymer conformations in heterogeneous confinement plays an important role in natural and engineering processes. We present a simulation study on the conformational structure and dynamics of a single, flexible polymer in a dense array of nanoposts with different sizes and separations, especially, when the volume of the interstitial space formed between four nanoposts is less than the size of the polymer chain. When a polymer is placed in the array of nanoposts, the size of polymer increases compared with that in the absence of nanoposts due to the confinement effect. It is shown that when a polymer is confined in the array of nanoposts the chain is elongated in the direction parallel to the nanoposts. As the interstitial volume between four nanoposts decreases either by increasing the nanopost diameter or by decreasing the separation between nanoposts, the chain elongation becomes more pronounced. On the contrary, the polymer size varies in a non-monotonic fashion, with an initial elongation followed by a chain contraction, as the interstitial volume is reduced both by increasing the nanopost diameter and decreasing the separation at the same time while keeping constant the width of the passageway between two nanoposts. The simulation analysis shows that the non-monotonic dependence of polymer size is determined by interplay between the chain alignment along the nanoposts in each interstitial volume and the chain spreading through passageways over several interstitial volume.

  • PDF

Effect of fiber and aggregate size on mode-I fracture parameters of high strength concrete

  • Kumar, Ch.Naga Satish;Krishna, P.V.V.S.S.R.;Kumar, D.Rohini
    • Advances in concrete construction
    • /
    • v.5 no.6
    • /
    • pp.613-624
    • /
    • 2017
  • In this paper, an experimental investigation was carried out to study the effect of volume fraction of fiber and maximum aggregate size on mode-I fracture parameters of high strength concrete. Total of 108 beams were tested on loading frame with three point loading, the variables in the high strength concrete beams are aggregate size (20 mm, 16 mm and 10 mm) and volume fraction of fibers (0%, 0.5%, 1% and 1.5%). The fracture parameters like fracture energy, brittleness number and fracture process zone were analyzed by the size effect method (SEM). It was found that fracture energy (Gf) increases with increasing the Maximum aggregate size and also increasing the volume of fibers, brittleness number (${\beta}$) decreases and fracture process zone (CF) increases.

Factors influencing endoscopic estimation of colon polyp size in a colon model

  • Koen Robert Beukema;Jaimy A. Simmering;Marjolein Brusse-Keizer;Sneha John;Rutger Quispel;Peter B. Mensink
    • Clinical Endoscopy
    • /
    • v.55 no.4
    • /
    • pp.540-548
    • /
    • 2022
  • Background/Aims: Colorectal polyps are removed to prevent progression to colorectal cancer. Polyp size is an important factor for risk stratification of malignant transformation. Endoscopic size estimation correlates poorly with pathological reports and several factors have been suggested to influence size estimation. We aimed to gain insight into the factors influencing endoscopic polyp size estimation. Methods: Images of polyps in an artificial model were obtained at 1, 3, and 5 cm from the colonoscope's tip. Participants were asked to estimate the diameter and volume of each polyp. Results: Fifteen endoscopists from three large-volume centers participated in this study. With an intraclass correlation coefficient of 0.66 (95% confidence interval [CI], 0.62-0.71) for diameter and 0.56 (95% CI, 0.50-0.62) for volume. Polyp size estimated at 3 cm from the colonoscope's tip yielded the best results. A lower distance between the tip and the polyp was associated with a larger estimated polyp size. Conclusions: Correct endoscopic estimation of polyp size remains challenging. This finding can affect size estimation skills and future training programs for endoscopists.

Evaluation of Dose Volume and Radiobiological Indices by the Dose Calculation Grid Size in Nasopharyngeal Cancer VMAT (비 인두암 체적 조절 호형 방사선 치료의 선량 계산 격자 크기에 따른 선량 체적 지수와 방사선 생물학적 지수의 평가)

  • Kang, Dong-Jin;Jung, Jae-Yong;Shin, Young-Joo;Min, Jung-Whan;Shim, Jae-Goo;Park, So-Hyun
    • Journal of radiological science and technology
    • /
    • v.43 no.4
    • /
    • pp.265-272
    • /
    • 2020
  • The purpose of this study was to investigate the dose-volume indices and radiobiological indices according to the change in dose calculation grid size during the planning of nasopharyngeal cancer VMAT treatment. After performing the VMAT treatment plan using the 3.0 mm dose calculation grid size, dose calculation from 1.0 mm to 5.0 mm was performed repeatedly to obtain a dose volume histogram. The dose volume index and radiobiological index were evaluated using the obtained dose volume histogram. The smaller the dose calculation grid size, the smaller the mean dose for CTV and the larger the mean dose for PTV. For OAR of spinal cord, brain stem, lens and parotid gland, the mean dose did not show a significant difference according to the change in dose calculation grid size. The smaller the grid size, the higher the conformity of the dose distribution as the CI of the PTV increases. The CI and HI showed the best results at 3.0 mm. The smaller the dose calculation grid size, the higher the TCP of the PTV. The smaller the dose calculation grid size, the lower the NTCP of lens and parotid. As a result, when performing the nasopharynx cancer VMAT plan, it was found that the dose calculation grid size should be determined in consideration of dose volume index, radiobiological index, and dose calculation time. According to the results of various experiments, it was determined that it is desirable to apply a grid size of 2.0 - 3.0 mm.