• 제목/요약/키워드: Volume imaging

검색결과 715건 처리시간 0.025초

Cone-beam computed tomographic imaging of central giant cell granuloma: A comprehensive review

  • Tahmasbi-Arashlow, Mehrnaz;Patel, Paras B.;Nair, Madhu K.;Liang, Hui;Cheng, Yi-Shing Lisa
    • Imaging Science in Dentistry
    • /
    • 제52권2호
    • /
    • pp.123-131
    • /
    • 2022
  • Purpose: The aim of this study was to characterize the cone-beam computed tomographic (CBCT) imaging features of central giant cell granuloma (CGCG) of the jawbone. Materials and Methods: This study retrospectively reviewed 26 CBCT studies of histologically proven cases of CGCG during a period of 20 years, from 1999 to 2019. Patients' demographic data were recorded, and radiographic features were assessed (location, border, cortication, appearance of the internal structure, locularity, septation, expansion, cortical perforation, effects on surrounding tissue, whether the lesion crossed the midline, and lesion volume). Results: In this study, CGCGs were seen almost twice as often in the mandible than in the maxilla, and 64.7% of mandibular lesions involved the anterior region. Only 26.9% of lesions crossed the midline, a feature that was considered characteristic of CGCG. Furthermore, 65.4% of lesions were unilocular and 34.6% were multilocular. The correlation between a lesion's size and its locularity was statistically significant, and larger lesions showed a multilocular appearance. The mean volume of multilocular lesions was greater than that of unilocular lesions. Conclusion: CGCGs showed variable radiographic features on CBCT, and this imaging modality is highly effective at demonstrating the radiographic spectrum and lesional extent of CGCGs in the jawbone.

The Volume of Subscapularis Muscle Remains Unaffected by Supraspinatus Tendon Tears: Three-dimensionally Reconstructed Magnetic Resonance Imaging Analysis

  • Jun, Yong Cheol;Moon, Young Lae;Bhardwaj, Havinder Dev;Lim, Jae Hwan;Cha, Dong Hyuk
    • Clinics in Shoulder and Elbow
    • /
    • 제22권1호
    • /
    • pp.3-8
    • /
    • 2019
  • Background: This study aimed to compare the subscapularis muscle volume between the intact groups (group I) and supraspinatus tendon tear groups (group T) based on the sex and three different age groups. Methods: Subjects with a group I and subjects with group T without any other lesions were retrospectively evaluated from among patients who received a magnetic resonance imaging (MRI) scan between January 2011 and December 2013. The MRI scans were studied by a consultant radiologist. The subscapularis muscle volume was compared according to the age and sex; the age groups were categorized as patients in their 40s, 50s, and 60s. The volume of subscapularis muscle was measured by three-dimensional reconstructed images acquired through the axial section of 1.5T MRI. Results: No statistically significant differences were observed between subscapularis muscle volume of the group I and group T, except for male patients in their 50s (group I: $100,650mm^3$ vs. group T: $106,488mm^3$) and 60s (group I: $76,347mm^3$ vs. group T: $99,549mm^3$) (p<0.05). Males had a larger mean volume of subscapularis muscle than females, and the subscapularis muscle volume decreased in a linear manner with increasing age. Conclusions: Decrease in subscapularis muscle volume was observed with increasing age, and the impact of supraspinatus tear on subscapularis muscle volume is age and sex dependent.

초음파 영상진단장치 (A Diagnostic Ultrasound Imaging System)

  • 이승우
    • 비파괴검사학회지
    • /
    • 제19권3호
    • /
    • pp.217-232
    • /
    • 1999
  • The ability to see the internal organs of the human body in a noninvasive way is a powerful diagnostic tool of modern medicine. Among these imaging modalities such as X-ray, MRI, and ultrasound. MRI and ultrasound are presenting much less risk of undesirable damage of both patient and examiner. In fact, no deleterious effects have been reported as a result of clinical examination by using MRI and ultrasound diagnostic equipment. As a result. their market volume has been rapidly increased. MRI has a good resolution. but there are a few disadvantages such as high price. non-real-time imaging capability. and expensive diagnostic cost. On the other hand, the ultrasound imaging system has inherently poor resolution as compared with X-ray and MRI. In spite of its poor resolution, the ultrasound diagnostic equipment is lower in price and has an ability of real-time imaging as compared with the others. As a result. the ultrasound imaging system has become general and essential modality for imaging the internal organs of human body. In this review various researches and developments to enhance the resolution of the ultrasound images are explained and future trends of the ultrasound imaging technology are described.

  • PDF

관류자기공명 영상처리 알고리즘을 이용한 대뇌 혈류량 맵의 구현 (Implementation of Regional Cerebral Blood Volume Map Using Perfusion Magnetic Resonance Image Process Algorithm)

  • 박병래
    • 한국콘텐츠학회논문지
    • /
    • 제5권5호
    • /
    • pp.296-304
    • /
    • 2005
  • 고양이 뇌 지방색전증을 유발한 후 자기공명 관류영상기법을 이용하여 대뇌혈류량을 정량적으로 분석하고 동적특성 변화를 구현 할 수 있는 기법을 제안한다. 고양이 20마리를 대상으로 한쪽 내경동맥에 리노레익 (n=11)을 주입하여 뇌 지방색전을 유발시켰고, 대조군으로는 이바론 입자 (n=9)를 주입하여 색전이 유발되게 하였다. 그 후 30분과 2시간에 각각 T2강조, 확산강조영상을 획득하고 가장 색전이 많이 일어난 부위에서 관류강조영상을 획득하였다. 획득한 데이터는 IDL 소프트웨어와 자체 개발한 영상처리 알고리즘을 이용하여 신호강도 곡선을 ${\Delta}R_2^*$ 곡선으로 변환한 후 적분하여 뇌혈류량을 측정하였다. 실험군에서 병변부위의 뇌혈류량은 정상부위에 비해 감소하였으며, 뇌혈류량 비는 시간경과에 따라 유의한 차이가 있었다 (P<0.005). 뇌 지방색전증의 초기에는 혈류량이 감소하였으나, 2시간에서는 30분에 비해 뇌혈류량이 다소 증가됨을 관찰 할 수 있었다. 뇌경색 발생시 조기에 자기공명확산 및 관류강조영상을 획득하여 개발한 영상처리 알고리즘을 적용하여 뇌 혈류량의 다양한 동적변화 특성 및 혈류역학적 변화를 상대적 관류도 맵으로 얻을 수 있었다.

  • PDF

Effect of different voxel sizes on the accuracy of CBCT measurements of trabecular bone microstructure: A comparative micro-CT study

  • Tayman, Mahmure Ayse;Kamburoglu, Kivanc;Ocak, Mert;Ozen, Dogukan
    • Imaging Science in Dentistry
    • /
    • 제52권2호
    • /
    • pp.171-179
    • /
    • 2022
  • Purpose: The aim of this study was to assess the accuracy of cone-beam computed tomographic (CBCT) images obtained using different voxel sizes in measuring trabecular bone microstructure in comparison to micro-CT. Materials and Methods: Twelve human skull bones containing posterior-mandibular alveolar bone regions were analyzed. CBCT images were obtained at voxel sizes of 0.075mm(high: HI) and 0.2mm(standard: Std), while microCT imaging used voxel sizes of 0.06 mm (HI) and 0.12 mm (Std). Analyses were performed using CTAn software with the standardized automatic global threshold method. Intraclass correlation coefficients were used to evaluate the consistency and agreement of paired measurements for bone volume (BV), percent bone volume (BV/TV), bone surface (BS), trabecular thickness (TbTh), trabecular separation (TbSp), trabecular number (TbN), trabecular pattern factor(TbPf), and structure model index (SMI). Results: When compared to micro-CT, CBCT images had higher BV, BV/TV, and TbTh values, while micro-CT images had lower BS, TbSp, TbN, TbPf, and SMI values (P<0.05). The BV, BV/BT, TbTh, and TbSp variables were higher with Std voxels, whereas the BS, TbPf, and SMI variables were higher with HI voxels for both imaging methods. For each imaging modality and voxel size evaluated, BV, BS, and TbTh were significantly different(P<0.05). TbN, TbPf, and SMI showed statistically significant differences between imaging methods(P<0.05). The consistency and absolute agreement between micro-CT and CBCT were excellent for all variables. Conclusion: This study demonstrated the potential of high-resolution CBCT imaging for quantitative bone morphometry assessment.

Use of Cardiac Computed Tomography for Ventricular Volumetry in Late Postoperative Patients with Tetralogy of Fallot

  • Kim, Ho Jin;Mun, Da Na;Goo, Hyun Woo;Yun, Tae-Jin
    • Journal of Chest Surgery
    • /
    • 제50권2호
    • /
    • pp.71-77
    • /
    • 2017
  • Background: Cardiac computed tomography (CT) has emerged as an alternative to magnetic resonance imaging (MRI) for ventricular volumetry. However, the clinical use of cardiac CT requires external validation. Methods: Both cardiac CT and MRI were performed prior to pulmonary valve implantation (PVI) in 11 patients (median age, 19 years) who had undergone total correction of tetralogy of Fallot during infancy. The simplified contouring method (MRI) and semiautomatic 3-dimensional region-growing method (CT) were used to measure ventricular volumes. Results: All volumetric indices measured by CT and MRI generally correlated well with each other, except for the left ventricular end-systolic volume index (LV-ESVI), which showed the following correlations with the other indices: the right ventricular end-diastolic volume index (RV-EDVI) (r=0.88, p<0.001), the right ventricular end-systolic volume index (RV-ESVI) (r=0.84, p=0.001), the left ventricular end-diastolic volume index (LV-EDVI) (r=0.90, p=0.001), and the LV-ESVI (r=0.55, p=0.079). While the EDVIs measured by CT were significantly larger than those measured by MRI (median RV-EDVI: $197mL/m^2$ vs. $175mL/m^2$, p=0.008; median LV-EDVI: $94mL/m^2$ vs. $92mL/m^2$, p=0.026), no significant differences were found for the RV-ESVI or LV-ESVI. Conclusion: The EDVIs measured by cardiac CT were greater than those measured by MRI, whereas the ESVIs measured by CT and MRI were comparable. The volumetric characteristics of these 2 diagnostic modalities should be taken into account when indications for late PVI after tetralogy of Fallot repair are assessed.

Portable Low-Cost MRI System Based on Permanent Magnets/Magnet Arrays

  • Huang, Shaoying;Ren, Zhi Hua;Obruchkov, Sergei;Gong, JIa;Dykstra, Robin;Yu, Wenwei
    • Investigative Magnetic Resonance Imaging
    • /
    • 제23권3호
    • /
    • pp.179-201
    • /
    • 2019
  • Portable low-cost magnetic resonance imaging (MRI) systems have the potential to enable "point-of-care" and timely MRI diagnosis, and to make this imaging modality available to routine scans and to people in underdeveloped countries and areas. With simplicity, no maintenance, no power consumption, and low cost, permanent magnets/magnet arrays/magnet assemblies are attractive to be used as a source of static magnetic field to realize the portability and to lower the cost for an MRI scanner. However, when taking the canonical Fourier imaging approach and using linear gradient fields, homogeneous fields are required in a scanner, resulting in the facts that either a bulky magnet/magnet array is needed, or the imaging volume is too small to image an organ if the magnet/magnet array is scaled down to a portable size. Recently, with the progress on image reconstruction based on non-linear gradient field, static field patterns without spatial linearity can be used as spatial encoding magnetic fields (SEMs) to encode MRI signals for imaging. As a result, the requirements for the homogeneity of the static field can be relaxed, which allows permanent magnets/magnet arrays with reduced sizes, reduced weight to image a bigger volume covering organs such as a head. It offers opportunities of constructing a truly portable low-cost MRI scanner. For this exciting potential application, permanent magnets/magnet arrays have attracted increased attention recently. A magnet/magnet array is strongly associated with the imaging volume of an MRI scanner, image reconstruction methods, and RF excitation and RF coils, etc. through field patterns and field homogeneity. This paper offers a review of permanent magnets and magnet arrays of different kinds, especially those that can be used for spatial encoding towards the development of a portable and low-cost MRI system. It is aimed to familiarize the readers with relevant knowledge, literature, and the latest updates of the development on permanent magnets and magnet arrays for MRI. Perspectives on and challenges of using a permanent magnet/magnet array to supply a patterned static magnetic field, which does not have spatial linearity nor high field homogeneity, for image reconstruction in a portable setup are discussed.

Automated Measurement of Native T1 and Extracellular Volume Fraction in Cardiac Magnetic Resonance Imaging Using a Commercially Available Deep Learning Algorithm

  • Suyon Chang;Kyunghwa Han;Suji Lee;Young Joong Yang;Pan Ki Kim;Byoung Wook Choi;Young Joo Suh
    • Korean Journal of Radiology
    • /
    • 제23권12호
    • /
    • pp.1251-1259
    • /
    • 2022
  • Objective: T1 mapping provides valuable information regarding cardiomyopathies. Manual drawing is time consuming and prone to subjective errors. Therefore, this study aimed to test a DL algorithm for the automated measurement of native T1 and extracellular volume (ECV) fractions in cardiac magnetic resonance (CMR) imaging with a temporally separated dataset. Materials and Methods: CMR images obtained for 95 participants (mean age ± standard deviation, 54.5 ± 15.2 years), including 36 left ventricular hypertrophy (12 hypertrophic cardiomyopathy, 12 Fabry disease, and 12 amyloidosis), 32 dilated cardiomyopathy, and 27 healthy volunteers, were included. A commercial deep learning (DL) algorithm based on 2D U-net (Myomics-T1 software, version 1.0.0) was used for the automated analysis of T1 maps. Four radiologists, as study readers, performed manual analysis. The reference standard was the consensus result of the manual analysis by two additional expert readers. The segmentation performance of the DL algorithm and the correlation and agreement between the automated measurement and the reference standard were assessed. Interobserver agreement among the four radiologists was analyzed. Results: DL successfully segmented the myocardium in 99.3% of slices in the native T1 map and 89.8% of slices in the post-T1 map with Dice similarity coefficients of 0.86 ± 0.05 and 0.74 ± 0.17, respectively. Native T1 and ECV showed strong correlation and agreement between DL and the reference: for T1, r = 0.967 (95% confidence interval [CI], 0.951-0.978) and bias of 9.5 msec (95% limits of agreement [LOA], -23.6-42.6 msec); for ECV, r = 0.987 (95% CI, 0.980-0.991) and bias of 0.7% (95% LOA, -2.8%-4.2%) on per-subject basis. Agreements between DL and each of the four radiologists were excellent (intraclass correlation coefficient [ICC] of 0.98-0.99 for both native T1 and ECV), comparable to the pairwise agreement between the radiologists (ICC of 0.97-1.00 and 0.99-1.00 for native T1 and ECV, respectively). Conclusion: The DL algorithm allowed automated T1 and ECV measurements comparable to those of radiologists.