• 제목/요약/키워드: Volume fraction

Search Result 2,425, Processing Time 0.024 seconds

Composite Structures of $SiC_p$/6063 Aluminum Alloy by Rheo-Compocasting. (Rheo-Compocasting에 의한 $SiC_p$/6063 Al합금의 복합조직)

  • Choe, Jeong-Cheol
    • Journal of Korea Foundry Society
    • /
    • v.10 no.4
    • /
    • pp.309-315
    • /
    • 1990
  • Aluminum alloy matrix composites reinforced by SiC particles were prepared by rheocompocasting, a process which consists of the incoporation and distribution of reinforcement by stirring within a semi-solid alloy. When the volume fraction of SiCp and stirring speed were fixed, the dispersion of SiCp in Al-matrix alloy depended on stirring time and solid volume fraction in slurry. The results were as follows : 1) As a dispersed SiCp during stirring at $647^{\circ}C$ in 6063-Al alloy, SiC was better dispersed than that other temperature, where solid volume fraction was 43% in slurry. 2) When increased solid fraction in slurry, rate of dispersing SiC increased during stirring and porosities decreased in matrix alloy after casting. 3) Inspite of stirring with 800rpm, since solid particles of matrix alloy in slurry joined each other and occured joining growth, so that SiC was not dispersed into solid particle.

  • PDF

Performance Analysis of Solar Heating System for High Solar Fraction using TRNSYS (태양열 온수급탕 시스템의 TRNSYS 열성능 분석)

  • Sohn, Jin-Gug
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.59-67
    • /
    • 2012
  • In this paper, performances of solar hot water supply systems are parametrically analyzed with the variations of solar collector area, slope of collector and volume of storage. All simulations are conducted by using TRNSYS computer program. Average solar fractions, collector efficiencies and temperatures of storage are investigated monthly as well as annually. For system analysis, the maximum value of monthly average solar fractions has a limitation of 90 percent. As a result, the designed solar thermal system with $6m^2$ collector area, $50^{\circ}$ slope and $0.36m^2$ storage volume could provide almost an annual average solar fraction of 72 percent. By increasing the storage volume to $0.42m^2$, the annual solar fraction of system increases up to 73 percent.

A Study on Effective Thermal Conductivity of Particulate Reinforced Composite (입자 강화 복합재의 등가 열전도 계수에 대한 연구)

  • Lee, J.K.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.133-138
    • /
    • 2006
  • Effective thermal conductivity of particulate reinforced composite has been predicted by Eshelby's equivalent inclusion method modified with Mori-Tanaka's mean field theory. The predicted results are compared with the experimental results from the literature. The model composite is polymer matrix filled with ceramic particles such as silica, alumina, and aluminum nitride. The preliminary examination by Eshelby type model shows that the predicted results are in good agreements with the experimental results for the composite with perfect spherical filler. As the shape of filler deviates from the perfect sphere, the predicted error increases. By using the aspect ratio of the filler deduced from the fixed filler volume fraction of 30%, the predicted results coincide well with the experimental results for filler volume fraction of 40% or less. Beyond this fraction, the predicted error increases rapidly. It can be finally concluded from the study that Eshelby type model can be applied to predict the thermal conductivity of the particulate composite with filler volume fraction less than 40%.

  • PDF

Anisotropy Studies on Hot-forged $\gamma$-TiAl Alloys (열간단조된 $\gamma$-TiAl 합금의 이방성에 관한 연구)

  • Lee, Jae-Seung;Park, No-Jin;Kim, Seong-Jin;Kim, Seung-Eon;O, Myeong-Hun
    • Korean Journal of Materials Research
    • /
    • v.10 no.9
    • /
    • pp.629-635
    • /
    • 2000
  • The texture evolution during isothermal forging and subsequent heat treatment in Ti-48.5at%Al-0.6at%Mo alloy was investigated. Especially, in the present study, research interest was focused on the interrelation between lamellar volume fraction and textures varied with the change of heat-treated time and temperature. It was found that texture components having ND┴{302) and TD$\perp${100} with minor TD$\perp${111} were developed by isothermal forging. In addition, when the followed heat-treatment time and temperature increased from $1330^{\circ}C$/10h to $1350^{\circ}C$/20h respectively, both the lamellar volume fraction and the intensity of textures mentioned above also gradually increased. However, the tensile elongation at room temperature decreased oppositely, as the lamellar volume fraction increased. These results suggested that tensile properties of $\gamma$-TiAl with the nearly lamellar microstructure at room temperature were affected more strongly by the microstructural features such as lamellar volume fraction rather than by textures.

  • PDF

Microstructure and Characteristic of Rheocast Al-6.2wt%Si Alloy (Al-6.2wt%Si합금의 리오캐스트 조직과 특성)

  • Lee, Jung-Il;Park, Ji-Ho;Lee, Ho-In;Kim, Moon-Il
    • Journal of Korea Foundry Society
    • /
    • v.14 no.5
    • /
    • pp.438-446
    • /
    • 1994
  • The effect of various thermomechanical treatments on the structure and rheological behaviour of Al-6.2wt%Si alloy in its solidification range were investigated using a Searle type high temperature viscometer. During continuous cooling, the viscosity increases gradually with increasing fraction of solidified alloy, until a critical fraction of solidified alloy is reached above which the viscosity sharply increases. The viscosity of the slurry, at a given volume fraction wolid, decreased with increasing shear rate. The size and morphology of primary solid particles during stirring is influenced strongly by shear rates, cooling rates, volume fraction and stirring time of solid. Morphological changes during stirring as a function of solid volume fractions, shear rate and processing time were also reported. In this study, the size of primary solid particles in these alloys consistently increases and the it`s aspect ratio decrease with the increase in fraction solid and decrease in shear rate. Crystal morphology changes from rosette type to spheroid type with the increase in shear rate and solid fraction.

  • PDF

Material Topology Optimization of FGMs using Homogenization and Linear Interpolation Methods (균질화 및 선형보간법을 이용한 기능경사 내열복합재의 물성분포 최적설계)

  • 조진래;박형종
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.495-503
    • /
    • 2001
  • In a functionally graded materials(FGM), two constituent material particles are mixed up according to a specific volume fraction distribution so that its thermoelastic behavior is definitely characterized by such a material composition distribution. Therefore, the designer should determine the most suitable volume fraction distribution in order to design a FGM that optimally meets the desired performance against the given constraints. In this paper, we address a numerical optimization procedure, with employing interior penalty function method(IPFM) and FDM, for optimizing 2D volume fractions of heat-resisting FGMs composed of metal and ceramic. We discretize a FGM domain into finite number of homogenized rectangular cells of single design variable in order for the optimization efficiency. However, after the optimization process, we interpolate the discontinuous volume fraction with globally continuous bilinear function in order to enforce the continuity of volume fraction distributions.

  • PDF

The Studies on the Semen Property and Preservation of Korean Jindo Dogs (한국 진도견 정액의 성상 및 보존성에 관한 연구)

  • 박병권;박창식;이성호;박영석
    • Korean Journal of Animal Reproduction
    • /
    • v.21 no.4
    • /
    • pp.405-409
    • /
    • 1997
  • This study was carried out to investigate the general characteristics such as semen volume, pH, sperm motility and sperm concentration of the semen collected from Korean Jindo dogs by the mothod of Digital manipulation of penis, and the effect of temperature and preservation time on motility of fresh semen. Multiple ejaculates were collected from four male Korean Jindo dogs. The results obtained in this experiment were as follows : 1. Average semen volume per ejaculate, semen pH, sperm motility and sperm concentration of the second fraction and the small volume of third fraction from the ejaculate were 3.29ml, 6.30, 96.70% and 1.64$\times$108 cells/ml, respectively. 2. Average semen volume per ejaculate, semen pH, sperm motility and sperm concentration of the first fraction from the ejaculate were 1.16ml, 6.10, 6.67% and 5.07$\times$105cells/ml. Average semen volume per ejaculate, semen pH, sperm motility and sperm concentration of the second fraction from the ejaculate were 2.30ml, 6.33, 97.66% and 1.92$\times$108cells/ml. Average semen volume per ejaculate, semen pH, sperm motility and sperm concentration of the third fraction from the ejaculate were 3.24ml, 6.51, 93.33% and 3.13$\times$107cells/ml. 3. Motility of fresh semen during preservation were higher at 17$^{\circ}C$ than at 5$^{\circ}C$ or 36$^{\circ}C$. When preservation temeprature was 17$^{\circ}C$, motility were 95.75% at 1 h, 90.00% at 6 h, 84.25% at 12 h, 68.00% at 18 h, 36.25% at 24 h and 28.75% at 30 h, respectively.

  • PDF

Optimal fiber volume fraction prediction of layered composite using frequency constraints- A hybrid FEM approach

  • Anil, K. Lalepalli;Panda, Subrata K.;Sharma, Nitin;Hirwani, Chetan K.;Topal, Umut
    • Computers and Concrete
    • /
    • v.25 no.4
    • /
    • pp.303-310
    • /
    • 2020
  • In this research, a hybrid mathematical model is derived using the higher-order polynomial kinematic model in association with soft computing technique for the prediction of best fiber volume fractions and the minimal mass of the layered composite structure. The optimal values are predicted further by taking the frequency parameter as the constraint and the projected values utilized for the computation of the eigenvalue and deflections. The optimal mass of the total layered composite and the corresponding optimal volume fractions are evaluated using the particle swarm optimization by constraining the arbitrary frequency value as mass/volume minimization functions. The degree of accuracy of the optimal model has been proven through the comparison study with published well-known research data. Further, the predicted values of volume fractions are incurred for the evaluation of the eigenvalue and the deflection data of the composite structure. To obtain the structural responses i.e. vibrational frequency and the central deflections the proposed higher-order polynomial FE model adopted. Finally, a series of numerical experimentations are carried out using the optimal fibre volume fraction for the prediction of the optimal frequencies and deflections including associated structural parameter.

Reinforcing Characteristics on Volume and Shape of Ductile Short-Fiber in Brittle Matrix Composites (취성기지 복합재료에서 연성 단섬유의 함유량 및 형상에 관한 보강특성)

  • Sin, Ik-Jae;Lee, Dong-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.250-258
    • /
    • 2000
  • The reinforcing effects of ductile short-fiber reinforced brittle matrix composites are studied by, measuring flexural strength, fracture toughness and impact energy as functions of fiber volume fraction and length. The parameters of fracture mechanics, K and J are applied to assess fracture toughness and bridging stress. It is found that fracture toughness is greatly, influenced by the bridging stress ill which fiber pull-out is occur. For the reinforcing effects as functions of fiber volume fraction($V_f$ = 1, 2, 3 %) and length(L = 3, 6. 10cm), the flexural strength is maximum at $V_f$ = 1% and both fracture toughness.

Study on the Shape of Free Surface Waves by the Scheme of Volume Fraction (Volume Fraction 기법에 의한 자유표면파 형상 연구)

  • Kwag, Seung-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1215-1220
    • /
    • 2008
  • To obtain the shape of the free surface more accurately, computations are carried out by a finite volume method using unstructured meshes and an interface capturing method. Free-surface flow, which is very important in the fields of ship and marine engineering, is numerically simulated for flows of both water and air. Control volumes are used with an arbitrary number of faces and allows a local mesh refinement. The integration is of second order, with a midpoint rule integration and linear interpolation. The method is fully implicit and uses quadratic interpolation. The solution method of pressure-correction type solves sequentially equations of momentum, continuity, conservation, and two-equations turbulence model. Comparison are quantitatively made between the computation and experiment in order to confirm the solution method.