• Title/Summary/Keyword: Volume determination

Search Result 531, Processing Time 0.029 seconds

Spectrophotometric Determination of Scandium(III) in Monazite after Separation Using Amberlite IRC 718 Chelating Resin

  • 박찬일;차기원
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.12
    • /
    • pp.1409-1412
    • /
    • 1999
  • The spectrophotometric determination method of scandium with eriochrome cyanine R (ECR) and the composition ratio of the complex were investigated in the presence of surfactants. A volume of 5 mL of 1.0×$10^{-3}$ M ECR and 10 mL of 2.0×$10^{-4}$ M CTMAB are necessary for the determination of 1.0×$10 ^{-7}$ ~ 3.0×$10^{-6}$ M Sc(III) at pH 6.5. The apparent molar absorption coefficient of the Sc(III)-ECR-CTMAB, ternary complex at 610 nm is 5.6×$10^5$ $mol^{-1}cm{-1}$L and its detection limit is 1.0×$10^{-7}$ M. Separation studies were conducted by the column method. The effect of pH, elution solution and the influence of rare earth elements as interferents was discussed. Their separation was carried out in 0.1 M HCl-50% methanol solution and 1.0 M HCl media. The method was applied for the determination of Sc(III) in monazite.

Hippocampus Volume Measurement for the determination of MCI

  • Jeon, Woong-Gi;Izmantoko, Yonny S.;Son, Ji-Hyeon;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.12
    • /
    • pp.1449-1455
    • /
    • 2012
  • This paper has developed a system for early diagnosis of senile dementia and mild cognitive impairment (MCI) by developing software to measure the volume of hippocampus. This software consists of two parts; segmentation and analysis. The segmentation part uses ROI and region growing to segment hippocampus region. On the other hand, the analysis part creates a volume rendering of hippocampus. This software is expected contribute in these research fields for dementia diagnosis and its medication planning.

Amperornetric Determination of Ascorbic Acia at a Thin Layer Flow Cell

  • Hahn, Young-Hee
    • Archives of Pharmacal Research
    • /
    • v.11 no.1
    • /
    • pp.56-60
    • /
    • 1988
  • A thin layer flow cell with cell volume of $8\;{\mu}{\ell}$ was constructed. Diffusion currents of ascorbic acid was directly proportional to the 1/3 power of volume flow rates. A linear dynamic range was obtained at the concentration range between $10^{-7}\;M\;and\;10^{-4}\;M$ of ascorbic acid with a detection limit of $10^{-8}\;M$. Ascorbic acid in the multivitamin product was amperometrically determined at TLFC after simply dissolving mg range ground product in $100m{\ell}$ of pH 7.0 phosphate buffer.

  • PDF

Determination of Trace Metals in Waters by FAAS after Enrichment as Metal-HMDTC Complexes Using Solid Phase Extraction

  • Tokalioglu, Serife;Kartal, Senol;Elci, Latif
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.5
    • /
    • pp.693-698
    • /
    • 2002
  • A method has been described for the determination of Cu(Ⅱ), Pb(Ⅱ), Ni(Ⅱ), Cd(Ⅱ), Mn(Ⅱ) and Fe(Ⅲ) by flame atomic absorption spectrometry (FAAS) after preconcentration on Amberlite XAD-16 resin, using hexamethyleneammonium-hexamethylenedithiocarbamate (HMA-HMDTC) as a chelating agent, and NH3/NH4Cl buffer solution (pH 9). Influences of various analytical parameters such as pH, concentration of nitric acid, amount of analytes, diverse ions and sample volume were investigated. The relative standard deviation (RSD) and the detection limit (LOD) were found in the range of 0.8-2.9% and 0.006-0.277 ㎍/mL,respectively. Recoveries obtained by the column method were quantitative ( >95%) at optimum conditions.The method was applied to the determination of some metal ions in seawater and wastewater samples. A high preconcentration factor (about 150 for seawater and 75 for wastewater samples) and simplicity are the main advantages of this suggested method.

The Optimal Analytical Method for the Determination of PCE and TCE by GC/FID with SPME technieque (고체상미량분석법(SPME)을 이용한 GC/FID에서 PCE 및 TCE 최적 분석법)

  • Ahn Sang-Woo;Lee Si-Jin;Chang Soon-Woong
    • Journal of Environmental Science International
    • /
    • v.13 no.10
    • /
    • pp.903-909
    • /
    • 2004
  • A new method based on solid phase microextraction(SPME), coupled with GC/FID, has been developed for the determination of PCE and TCE in water samples. The experimental parameters affecting the SPME process (i.e, kinds of fibers, extraction time, desorption time, extraction temperature, volume ratio of sample to headspace, salt addition, and magnetic stirring) were optimized. The coefficients of determination ($R^2$) for PCE and TCE were 0.9951 and 0.9831, respectively when analytes concentration ranges from 10 to 300$\mu$g/L. The relative standard deviations were 3.4 and $2.1\%$ for concentration of 10$\mu$g/L(n=5), respectively. The detection limits of PCE and TCE were 0.5 and l.3$\mu$g/L, respectively.

Organic Precipitate Flotation of Trace Metallic Elements with Ammonium Pyrrolidinedithiocarbamate (II). Application of Solvent Sublation for Determination of Trace Cd, Co, Cu and Ni in Water Samples

  • 김영상;정용준;최희선
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.1
    • /
    • pp.50-56
    • /
    • 1998
  • A solvent sublation was studied for the determination of trace Cd, Co, Cu and Ni in water samples. Ammonium pyrrolidine dithiocarbamate (APDC) was used as a complexing agent. Experimental conditions such as pH of solution, amounts of APDC, the type and amount of surfactant, the type of solvent, etc. were optimized for the effective sublation of analytes. After metal-PDC complexes were formed in sample solutions of pH 2.5, the precipitate-type complexes were floated in a flotation cell with an aid of sodium lauryl sulfate as a surfactant and by bubbling with nitrogen gas. The precipitates were dissolved and separated into the surface layer of methyl iso-butyl ketone (MIBK). The analytes preconcentrated were determined by a graphite furnace atomic absorption spectrophotometry (GF-AAS). Extractability of each element was 88% for Cd(Ⅱ), 86% for Co(Ⅱ), 95% for Cu(Ⅱ) and 76% for Ni(Ⅱ), respectively. And this procedure was applied to the analysis of real samples. From the recoveries of more than 92%, it was concluded that this method could be simple and applicable for the determination of trace elements in various water samples of a large volume.

Three Dimensional Target Volume Reconstruction from Multiple Projection Images

  • Cheong, Kwang-Ho;Suh, Tae-Suk;Lee, Hyoung-Koo;Choe, Bo-Young
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.439-441
    • /
    • 2002
  • The aim of this study is to reconstruct the 3D target volume from multiple projection images. It was assumed that we were already aware of the target position exactly, and all processes were performed in Target Coordinates whose origin was the center of the target. We used six projections: two projections were used to make a Reconstruction Box and four projections were for image acquisition. Reconstruction Box was made up of voxels of 3D matrix. Projection images were transformed into 3D volume in this virtual box using geometrical based back-projection method. Algorithm was applied to an ellipsoid model and horse-shoe shaped model. Projection images were created using C program language by geometrical method and reconstruction was also accomplished using C program language and Matlab(The Mathwork Inc., USA). For ellipsoid model, reconstructed volume was slightly overestimated but target shape and position was proved to be correct. For horse-shoe shaped model, reconstructed volume was somewhat different from original target model but there was a considerable improvement in target volume determination.

  • PDF

Dental age estimation using cone-beam computed tomography: A systematic review and meta-analysis

  • Faezeh Yousefi;Younes Mohammadi;Mehrnaz Ahmadvand;Parnian Razaghi
    • Imaging Science in Dentistry
    • /
    • v.53 no.2
    • /
    • pp.91-99
    • /
    • 2023
  • Purpose: This systematic review aimed to investigate the correlation between chronological age and dental pulp volume in cone-beam computed tomography (CBCT). Materials and Methods: The literature was searched in 4 databases(PubMed, Scopus, Web of Science, and Google Scholar). Within each study, the outcome of interest was the correlation (r) between chronological age and pulp volume. A random-effect meta-analysis was conducted. Subgroup analysis was carried out according to sex and tooth type. Results: Of 5,693 identified studies, 27 fulfilled the inclusion criteria and were selected for meta-analysis. These articles focused on single-rooted teeth (n=21), multi-rooted teeth (n=6), maxillary teeth (n=14), mandibular teeth (n=6), and maxillary and mandibular teeth (n=12). The relationship between chronological age and dental pulp volume was examined in the entire population (r= -0.67), men (r= -0.75), and women (r= -0.77) in single- and multi-rooted teeth. The results of the total population analysis showed a relatively strong negative relationship between age and pulp volume. Conclusion: This study suggested that CBCT is a reliable and repeatable tool for dental age estimation. A strong inverse relationship was observed between pulp chamber volume and age. Further studies on the correlation between chronological age and pulp volume of multi-rooted teeth may be beneficial.

The Effect of Volume Reduction on Computed Treatment Planning during Head and Neck IMRT and VMAT (두경부 IMRT 및 VMAT 시 체적 감소가 전산화치료계획에 미치는 영향)

  • Ki-Cheon Um;Gha-Jung Kim;Geum-Mun Back
    • Journal of radiological science and technology
    • /
    • v.46 no.3
    • /
    • pp.239-246
    • /
    • 2023
  • In this study, we assessed the effect of reduction of tumor volume in the head and neck cancer by using RANDO phantom in Static Intensity-Modulated Radiation Therapy (S-IMRT) and Volumetric-Modulated Arc Therapy (VMAT) planning. RANDO phantom's body and protruding volumes were delineated by using Contour menu of Eclipse™ (Varian Medical System, Inc., Version 15.6, USA) treatment planning system. Inner margins of 2 mm to 10 mm from protruding volumes of the reference were applied to generate the parameters of reduced volume. In addition, target volume and Organ at Risk (OAR) volumes were delineated. S-IMRT plan and VMAT plan were designed in reference. These plans were assigned in the reduced volumes and dose was calculated in reduced volumes using preset Monitor unit (MU). Dose Volume Histogram (DVH) was generated to evaluate treatment planning. Conformity Index (CI) and R2 in reference S-IMRT were 0.983 and 0.015, respectively. There was no significant relationship between CI and the reduced volume. Homogeneity Index (HI) and R2 were 0.092 and 0.960, respectively. The HI increased when volume reduced. In reference VMAT, CI and R2 were 0.992 and 0.259, respectively. There was no relationship between the volume reduction and CI. On the other hand, HI and R2 were 0.078 and 0.895, respectively. The value of HI increased when the volume reduced. There was significant difference (p<0.05) between parameters (Dmean and Dmax) of normal organs of S-IMRT and VMAT except brain stem. Volume reduction affected the CI, HI and OAR dose. In the future, additional studies are necessary to incorporate the reduction of the volume in the clinical setting.

Preconcentration and Determination of Fe(III) from Water and Food Samples by Newly Synthesized Chelating Reagent Impregnated Amberlite XAD-16 Resin

  • Tokahoglu, Serife;Ergun, Hasan;Cukurovah, Alaaddin
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1976-1980
    • /
    • 2010
  • A simple and reliable method has been developed to selectively separate and concentrate trace amounts of Fe(III) ions from water and food samples by using flame atomic absorption spectrometry. A new reagent, 5-hydroxy-4-ethyl-5,6-di-pyridin-2-yl-4,5-dihydro-2H-[1,2,4] triazine-3-thione, was synthesized and characterized by using FT-IR spectroscopy and elemental analysis. Effects of pH, concentration and volume of elution solution, sample flow rate, sample volume and interfering ions on the recovery of Fe(III) were investigated. The optimum pH was found to be 5. Eluent for quantitative elution was 10 mL of 2 M HCl. The preconcentration factor of the method, detection limit (3s/b, ${\mu}gL^{-1}$) and relative standard deviation values were found to be 25, 4.59 and 1%, respectively. In order to verify the accuracy of the method, two certified reference materials (TMDA 54.4 lake water and SRM 1568a rice flour) were analyzed. The results obtained were in good agreement with the certified values. The method was successfully applied to the determination of Fe(III) ions in water and food samples.