• Title/Summary/Keyword: Volume axial

Search Result 370, Processing Time 0.02 seconds

Flow Analysis in the Tip Clearance of Axial Flow Rotor Using Finite-Element Large-Eddy Simulation Method (유한요소 LES법에 의한 축류 회전차 팁 틈새의 유동해석)

  • Lee, Myeong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.686-695
    • /
    • 2009
  • Flow characteristics in linear axial cascade have been studied using large eddy simulation(LES) based on finite element method(FEM) to investigate details of the leakage flow in the tip clearance of axial flow rotor. STAR-CD(FVM) and PAT-Flow(FEM) have been adopted to solve the Navier-Stokes equations for the simulation of the unsteady turbulent flow. Numerical results from the present study have been compared with the existing experimental results to investigate a tip clearance effect on velocity profile and static pressure distribution on blade surface at various spanwise positions. Both simulation results agree well with the experimental data. However, it has been shown that the results of finite-element large-eddy simulation agree better with experimental data than $k-{\varepsilon}$ turbulent model based on finite volume method regarding the tip vortex geometry and static pressure distribution at the center of the tip vortex core. As a result of this study, it is shown that finite-element large-eddy simulation method can predict more exactly on the tip leakage vortex flow and behind flow field.

Axial compression behavior of circular recycled concrete-filled steel tubular short columns reinforced by silica fume and steel fiber

  • Chen, Juan;Liu, Xuan;Liu, Hongwei;Zeng, Lei
    • Steel and Composite Structures
    • /
    • v.27 no.2
    • /
    • pp.193-200
    • /
    • 2018
  • This paper presents an experimental work for short circular steel tube columns filled with normal concrete (NAC), recycled aggregate concrete (RAC), and RAC with silica fume and steel fiber. Ten specimens were tested under axial compression to research the effect of silica fume and steel fiber volume percentage on the behavior of recycled aggregate concrete-filled steel tube columns (RACFST). The failure modes, ultimate loads and axial load- strain relationships are presented. The test results indicate that silica fume and steel fiber would not change the failure mode of the RACFST column, but can increase the mechanical performances of the RACFST column because of the filling effect and pozzolanic action of silica fume and the confinement effect of steel fiber. The ultimate load, ductility and energy dissipation capacity of RACFST columns can exceed that of corresponding natural aggregate concrete-filled steel tube (NACFST) column. Design formulas EC4 for the load capacity NACFST and RACFST columns are proposed, and the predictions agree well with the experimental results from this study.

Three-dimensional Capsular Volume Measurements in Multidirectional Shoulder Instability

  • Jun, Yong Cheol;Moon, Young Lae;Elsayed, Moustafa I.;Lim, Jae Hwan;Cha, Dong Hyuk
    • Clinics in Shoulder and Elbow
    • /
    • v.21 no.3
    • /
    • pp.134-137
    • /
    • 2018
  • Background: In a previous study undertaken to quantify capsular volume in rotator cuff interval or axillary pouch, significant differences were found between controls and patients with instability. However, the results obtained were derived from two-dimensional cross sectional areas. In our study, we sought correlation between three-dimensional (3D) capsular volumes, as measured by magnetic resonance arthrography (MRA), and multidirectional instability (MDI) of the shoulder. Methods: The MRAs of 21 patients with MDI of the shoulder and 16 control cases with no instability were retrospectively reviewed. Capsular areas determined by MRA were translated into 3D volumes using 3D software Mimics ver. 16 (Materilise, Leuven, Belgium), and glenoid surface area was measured in axial and coronal MRA views. Then, the ratio between capsular volume and glenoid surface area was calculated, and evaluated with control group. Results: The ratio between 3D capsular volume and glenoid surface area was significantly increased in the MDI group ($3.59{\pm}0.83cm^3/cm^2$) compared to the control group ($2.53{\pm}0.62cm^3/cm^2$) (p<0.01). Conclusions: From these results, we could support that capsular volume enlargement play an important role in MDI of the shoulder using volume measurement.

Location Studies of Prostate Volume Measurement by using Transrectal Ultrasonography: Experimental Study by Self-Produced Prostate Phantom (경직장초음파를 이용한 전립선 볼륨측정 시의 위치 연구: 전립선모형 제작과 실험)

  • Kim, Yun-Min;Yoon, Joon;Byeon, II-kyun;Lee, Hoo-Min;Kim, Hyeong- Gyun
    • Journal of radiological science and technology
    • /
    • v.38 no.4
    • /
    • pp.437-442
    • /
    • 2015
  • Accurate volume measurement of the prostate is a significant role in determining the result of diagnosis and treatment of benign prostate hyperplasia. The purpose of this study was to determine, when measuring prostate volume by TRUS, whether location is more accurately determined by transaxial or longitudinal scanning. With reference to the patient's image, it was produced six prostate model. It compares the actual volume and the measurement volume, and find the optimal measurement position of each specific model. Prostate volume measured by TRUS closely correlates with prostate phantom volume. There was no significant difference(p = .156). To measure the accurate volume of prostate with focal protrusion, its length should be measured exclude the protrusions.

Axial Behavior of Reinforced Concrete Columns Externally Strengthened with Unbonded Wire Rope and T-Shaped Steel Plate (와이어로프와 T 강판으로 비부착 보강된 철근콘크리트 기둥의 중심 축하중 거동)

  • Yang, Keun-Hyeok;Sim, Jae-Il;Byun, Hang-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.221-229
    • /
    • 2008
  • An improved unbonded-type column strengthening procedure using wire rope and T-shaped steel plate units was proposed. Eight strengthened columns and an unstrengthened control column were tested under concentric axial load. The main variables considered were the volume ratio of wire rope and the flange width and configuration of T-shaped steel plates. Axial load capacity and ductility ratio of columns tested were compared with predictions obtained from the equation specified in ACI 318-05 and those of conventionally tied columns tested by Chung et al., respectively. In addition, a mathematical model was proposed to evaluate the complete stress-strain relationship of concrete confined by the wire rope and T-plate units. Test results showed that the axial load capacity and ductility of columns increased with the increase of the volume ratio of wire rope and the flange width of T-plates. In particular, at the same lateral reinforcement index, a much higher ductility ratio was observed in the strengthened columns having the volume ratio of wire rope above 0.0039 than in the tied columns. A mathematical model for the stress-strain relationship of confined concrete using the proposed strengthening procedure is developed. The predicted stress-strain curves were in good agreement with test results.

Study on Noise Reduction by Optimizations of In-line Duct Flow (덕트의 유로 최적화를 통한 소음저감 연구)

  • Han, Jae-Oh;Lee, Soo-Young;Mo, Jin-Yong;Lee, Jai-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.803-808
    • /
    • 2006
  • This paper was a study about noise reduction through flow stabilization in duel using experimental method and numerical analysis at the same time. To determine the fan's type three kinds of fans(axial fan, centrifugal fan, and axial fan with centrifugal type) was examined to investigate the suitability for duct. As a result, under the equal number of rotation 2000 RPM, performance of an axial fan with centrifugal type was the most superior by 55dBA at 4.3CMM among other fans. After this, analyzed the results of the numerical analysis to find out the optimum design of pitch angle such as $0^{\circ},\;10^{\circ},\;15^{\circ}\;and\;20^{\circ}$. The intensity of turbulence was low when pitch angle was $15^{\circ}$ and air volume became peak by 5.08 CMM. It was observed that axis component of velocity increased gradually when pitch angle increased from $0^{\circ}\;to\;20^{\circ}$. Finally, designed the shapes of D/S(Down Stream) in duct that agreed inlet angle($\delta$) of stationary blades with pitch angle($\beta$) of axial fan with centrifugal type and derived flow to duct medial, and changed the shape of motor-mount to reduce occurance of unstable vortex in tip of impeller, and embodied noise reduction and improvement of air flow rate through flow stabilization.

  • PDF

Mechanical performance of sand-lightweight concrete-filled steel tube stub column under axial compression

  • Zhang, Xianggang;Deng, Dapeng;Lin, Xinyan;Yang, Jianhui;Fu, Lei
    • Structural Engineering and Mechanics
    • /
    • v.69 no.6
    • /
    • pp.627-635
    • /
    • 2019
  • In order to study the axial compression performance of sand-lightweight concrete-filled steel tube (SLCFST) stub columns, three circular SLCFST (C-SLCFST) stub column specimens and three SLCFST square (S-SLCFST) stub column specimens were fabricated and static monotonic axial compression performance testing was carried out, using the volume ratio between river sand and ceramic sand in sand-lightweight concrete (SLC) as a varying parameter. The stress process and failure mode of the specimens were observed, stress-strain curves were obtained and analysed for the specimens, and the ultimate bearing capacity of SLCFST stub column specimens was calculated based on unified strength theory, limit equilibrium theory and superposition theory. The results show that the outer steel tubes of SLCFST stub columns buckled outward, core SLC was crushed, and the damage to the upper parts of the S-SLCFST stub columns was more serious than for C-SLCFST stub columns. Three stages can be identified in the stress-strain curves of SLCFST stub columns: an elastic stage, an elastic-plastic stage and a plastic stage. It is suggested that AIJ-1997, CECS 159:2004 or AIJ-1997, based on superposition theory, can be used to design the ultimate bearing capacity under axial compression for C-SLCFST and S-SLCFST stub columns; for varying replacement ratios of natural river sand, the calculated stress-strain curves for SLCFST stub columns under axial compression show good fitting to the test measure curves.

Computational and Experimental Study of Effects of Guide Vanes and Tip Clearances on Performances of Axial flow Fans (선박용 송풍기의 날개 끝 간격과 정익이 성능에 미치는 영향에 대한 전산 유체 해석)

  • Lee, Sung-Su;Kim, Hak-Sun;Nam, Kwang-Hyun;Hong, Jae-Ik;Chun, Seung-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.6
    • /
    • pp.24-32
    • /
    • 2004
  • The effects of guide vanes and tip clearances on the characteristics nf axial flow fans are investigated both computationally and experimentally. Performance test of fans carried out in full scale shows considerable effects of tip clearance between rotor tip and duct on the characteristics of fans. The tested results are compared with the computation based on the finite volume method to solve the Navier-Stoke equations with $textsc{k}$-$\varepsilon$ turbulence model. The comparison shows good agreements between experimental and computational results. In addition, the effects of shape of guide vanes are numerically studied. The results show that increased volume of separated region around the guide vane reduces the recovery of tangential component of kinetic energy in the wake, resulting in loss of efficiency

Computer-aided approach for modelling of FG cylindrical shell sandwich with ring supports

  • Hussain, Muzamal;Naeem, Muhammad Nawaz;Khan, Muhammad Shabaz;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.25 no.5
    • /
    • pp.411-425
    • /
    • 2020
  • In this paper, the shell material has been taken as functionally graded material and their material quantity is located by the exponential volume fraction law. Moreover, the impact of ring supports around the shell circumference has been examined for their various positions along the shell axial length. These rings support restraints the radial displacement in the transverse direction. While the axial modal deformation functions have been estimated by characteristic beam functions and nature of materials used for construction of cylindrical shells. The fundamental natural frequency of cylindrical shell of parameter versus ratios of length- and height-to-radius for a wide range has been reported and investigated through the study. In addition, by increasing height-to-radius ratio resulting frequencies also increase and frequencies decrease on ratio of length-to-radius. Though the trends of frequency values of both ratios are converse to each other with three different boundary conditions. Also it is examined the position of ring supports with length-to radius ratio, height-to-radius ratio and varying the exponent of volume fraction. MATLAB software package has been utilized for extracting shell frequency spectra. The obtained results are confirmed by comparing with available literature.

Experimental Study on the Triaxial Compressive Behaviour of Unsaturated Soil (불포화토의 삼축압축거동에 관한 실험적 연구)

  • Kim, Young-Seok;Oka, Fusao;Cho, Sam-Deok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1224-1227
    • /
    • 2006
  • It has been recognized unsaturated soil behaviour playing an important role in geomechanics. Up to now, only a few experimental data are available for the technical difficulties related to both volume changes and suction measurements. In this study, the volume changes of unsaturated compacted silty soil were monitored with proximeter (i.e. non-contactable transducer) during various triaxial compression tests, which gave a realistic estimation in the volume changes of unsaturated soil sample. The measurement of volume changes were performed with 0.5% of the maximum error under the axial strain ratio of less than 10%. The experimental results have revealed that the mechanical behaviour of unsaturated soil can be significantly affected by the matric suction. During the shearing processes, the level of maximum deviator stress under the initial suction pressure of 50kPa was higher than that under the initial suction pressure of 10kPa. On the other hand, the volume changes became smaller under the increase in the initial suction pressure.

  • PDF