• 제목/요약/키워드: Volume Ratio Coefficient

검색결과 225건 처리시간 0.03초

흙-벤토나이트 혼합물의 지반공학적 특성 (Geotechnical Properties of Soil-Bentonite Mixtures)

  • 채교익;권무남
    • 한국농공학회지
    • /
    • 제43권5호
    • /
    • pp.132-144
    • /
    • 2001
  • Iln order to figure out criteria of bentonite for using as impervious material of waste landfill, laboratory experiments were performed to reveal the geotechnical properties of soil-bentonite mixtures such as compaction test, direct shear test, unconfined compression test, triaxial compression test, consolidation test and permeability test. The results of the study are summarized as follows ; 1. Based on the compaction test, optimum moisture content increased with the increase of bentonite content, but maximum dry density decreased. 2. In unconfined compression test, the maximum strength of the soil-bentonite mixtures appeared at 10% bentonite content. The correlation equation between stress($\sigma$) and strain($\varepsilon$) of the soil-bentonite mixtures is given by ; $\sigma=\frac{a\cdot\varepsilon}{\varepsilon^n+b}$ 3. In shear test of the mixtures. the shear strength showed an increasing trend with increase of bentonite content and the maximum shear strength appeared at 10% bentonite content. 4. In consolidation test, the coefficient of compressibility $(a_v)$$(m_v)$$(C_v)$

  • PDF

엔진실 차폐 시스템의 냉각성능 개선을 위한 수치적 연구 (NUMERICAL STUDY FOR COOLING CAPACITY IMPROVEMENT OF ENGINE ROOM ENCLOSURE SYSTEM)

  • 배이석;유근종;최훈기
    • 한국전산유체공학회지
    • /
    • 제14권2호
    • /
    • pp.39-45
    • /
    • 2009
  • In engine room, proper enclosure system is preferable for reducing noise level but the enclosure system in the engine room causes bad influence on cooling performance due to poor ventilation. Cooling efficiency of the enclosure system can be improved by varying fan speed and proper flow path for ventilation. In this study, numerical analysis is performed to assess cooling effect of the enclosure system using finite volume method. The RNG k-$\varepsilon$ model is adopted for turbulence model along with heat exchanger model and porous media model for heat exchanger analysis, and moving reference frame model for rotational fan. Verification result shows reasonable agreement with experimental data. Analysis results show direct effect of velocity and temperature distribution on cooling ability in the enclosure system. Enclosure system of case B shows high heat transfer coefficient and has the smallest area ratio of opened flow passages which is good for noise level reduction.

해성점토의 반복재하 및 제하압밀특성 (Consolidation Characteristics of Repeated Increasing and Decreasing Load in Marine Clay)

  • 주재우;김재영
    • 한국농공학회지
    • /
    • 제24권3호
    • /
    • pp.84-91
    • /
    • 1982
  • This study was conducted to investigate the consolidation characteristics of repeated increasing and decreasing load m marine clay. Consolidation test was performed by the whole repetition of increasing and decreasing load and the partial repetition of increasing and decreasing load. The results obtained were as follows: 1. The void ratio e was decreased according to the increase of preloading and the repe- tition of increasing and decreasing load. 2. In case of the partial repetition of increasing and decreasing load the compression index Cc was decreased with the increase of preloading and the repetition of increa- sing and decreasing load 3. The expansion rate was greatly increased with the whole repetition of increasing and decreasing load and it was inclined to be increased with the increase of preloading in case of the partial repetition. 4. The coefficient of volume compressibility were decreased according to the repetition of increasing and decreasing load 5. The secondary consolidation coefficient was decreased with the repetition of increasing and decreasing load. Especially in case of the partial repetition, the peaks of secon- dary consolidation curves could be found to move toward the vicinity of preloading.

  • PDF

A multi-phase model for predicting the effective chloride migration coefficient of ITZ in cement-based materials

  • Yang, C.C.;Weng, S.H.
    • Advances in concrete construction
    • /
    • 제1권3호
    • /
    • pp.239-252
    • /
    • 2013
  • Mortar microstructure is considered as a three-phase composite material, which is cement paste, fine aggregate and interfacial transition zone. Interfacial transition zone is the weakest link between the cement paste and fine aggregate, so it has a significant role to determine the properties of cementitious composites. In this study, specimens (w/c = 0.35, 0.45, 0.55) with various volume fractions of fine aggregate ($V_f$ = 0, 0.1, 0.2, 0.3 and 0.4) were cast and tested. To predict the equivalent migration coefficient ($M_e$) and migration coefficient of interfacial transition zone ($M_{itz}$), double-inclusion method and Mori-Tanaka theory were used to estimate. There are two stages to estimate and calculate the thickness of interfacial transition zone (h) and migration coefficient of interfacial transition zone ($M_{itz}$). The first stage, the data of experimental chloride ion migration coefficient ($M_s$) was used to calculate the equivalent migration coefficient of fine aggregate with interfacial transition zone ($M_e$) by Mori-Tanaka theory. The second stage, the thickness of interfacial transition zone (h) and migration coefficient of interfacial transition zone ($M_{itz}$) was calculated by Hori and Nemat-Nasser's double inclusion model. Between the theoretical and experimental data a comparison was conducted to investigate the behavior of interfacial transition zone in mortar and the effect of interfacial transition zone on the chloride migration coefficient, the results indicated that the numerical simulations is derived to the $M_{itz}/M_m$ ratio is 2.11~8.28. Additionally, thickness of interfacial transition zone is predicted from $10{\mu}m$, 60 to $80{\mu}m$, 70 to $100{\mu}m$ and 90 to $130{\mu}m$ for SM30, M35, M45 and M55, respectively.

투수성 폴리머 블록 포장에 의한 우수 유출 저감 효과에 관한 실험적 연구 (Experimental Study on Rainfall Runoff Reduction Effects by Permeable Polymer Block Pavement)

  • 성찬용;김영익
    • 한국농공학회논문집
    • /
    • 제54권2호
    • /
    • pp.157-166
    • /
    • 2012
  • Most of the roads are paved with impermeable materials such as asphalt concrete and cement concrete, and in the event of heavy rainfall, rainwater directly flows into river through a drainage hole on the pavement surface. This large quantity of rainwater directly spilled into the river frequently leads to the flooding of urban streams, damaging lowlands and the lower reaches of a river. In recent years there has been a great deal of ongoing research concerning water permeability and drainage in pavements. Accordingly, in this research, a porous polymer concrete was developed for permeable pavement by using unsaturated polyester resin as a binder, recycled aggregate as coarse aggregate, fly ash and blast furnace slag as filler, and its physical and mechanical properties were investigated. Also, 3 types of permeable polymer block by optimum mix design were developed and rainfall runoff reduction effects by permeability pavement using permeable polymer block were analyzed based on hydraulic experimental model. The infiltration volume, infiltration ratio, runoff initial time and runoff volume in permeability pavement with permeable polymer block of $300{\times}300{\times}80$ mm were evaluated for 50, 100 and 200mm/hr rainfall intensity.

임계열유속 향상을 위한 나노물질의 산화처리에 대한 연구 (Study on the Oxidation Treatment of Nanoparticles for the Critical Heat Flux)

  • 김우중;전용한;김남진
    • 한국태양에너지학회 논문집
    • /
    • 제37권6호
    • /
    • pp.39-49
    • /
    • 2017
  • Pool boiling, one of the key thermal-hydraulics phenomena, has been widely studied for improving heat transfer efficiencies and safety of nuclear power plants, refrigerating systems, solar-collector heat pipes, and other facilities and equipments. In the present study, the critical heat flux (CHF) and heat-transfer coefficients were tested under the pool-boiling state using graphene M-5 and M-15 nanofluids as well as oxidized graphene M-5 nanofluid. The results showed that the highest CHF increase for both graphene M-5 and M-15 was at the 0.01% volume fraction and, moreover, that the CHF-increase ratio for small-diameter graphene M-5 was higher than that for large-diameter graphene M-15. Also at the 0.01% volume fraction, the oxidized graphene M-5 nanofluid showed a 41.82%-higher CHF-increase ratio and a 26.7%-higher heat-transfer coefficient relative to the same nanofluid without oxidation treatment at the excess temperature where the CHF of distilled water occurs.

Numerical Investigation on Frictional Pressure Loss in a Perfect Square Micro Channel with Roughness and Particles

  • Han Dong-Hyouck;Lee Kyu-Jung
    • Journal of Mechanical Science and Technology
    • /
    • 제20권8호
    • /
    • pp.1266-1274
    • /
    • 2006
  • A numerical study is performed to investigate the effect of inner surface roughness and micro-particles on adiabatic single phase frictional pressure drop in a perfect square micro channel. With the variation of particles sizes (0.1 to $1{\mu}m$) and occupied volume ratio (0.01 to 10%) by particles, the Eulerian multi-phase model is applied to a $100{\mu}m$ hydraulic diameter perfect square micro channel in laminar flow region. Frictional pressure loss is affected significantly by particle size than occupied volume ratio by particles. The particle properties like density and coefficient of restitution are investigated with various particle materials and the density of particle is found as an influential factor. Roughness effect on pressure drop in the micro channel is investigated with the consideration of roughness height, pitch, and distribution. Additionally, the combination effect by particles and surface roughness are simulated. The pressure loss in microchannel with 2.5% relative roughness surface can be increased more than 20% by the addition of $0.5{\mu}m$ diameter particles.

축방향 내부 핀을 가진 열사이폰의 작동유체 체적변화에 대한 열전달 성능에 관한 연구 (A Study on the Performance of the Heat Transfer for the Liquid Filling as the Ratio of Working Fluid Volume to Total Volume of the Thermosyphon with Axial Internal Fins)

  • 이정한;이기백;조동현
    • 한국태양에너지학회 논문집
    • /
    • 제22권1호
    • /
    • pp.23-30
    • /
    • 2002
  • 본 연구는 축방향 내부 핀을 가진 열사이폰의 작동유체의 체적변화에 대한 응축 및 비등열전달 성능에 관한 연구이다. 열사이폰 내부의 작동유체는 증류수를 사용하였다. 열사이폰의 총체적에 대한 작동유체의 양을 변화시키면서 실험데이터를 산출하였다. 열사이폰의 응축부에 대한 열유속과 응축열전달계수를 구하였으며, 실험결과를 이론모델과 비교분석하였다. 실험결과로부터 열사이폰의 열전달 성능은 작동유체의 체적변화에 크게 의존하였다. 축방향내부 핀을 가진 열사이폰의 열전달 성능은 평튜브로 제작한 열 사이폰보다 크게 향상되었다. 이와 같은 열사이폰을 태양열 분야의 열교환기에 응용할 경우, 고성능화와 소형화할 수 있다. 그리고 산업현장에서 실제적으로 적용하기 위해 총열전달계수를 산출하였다.

폐 브라운관(CRT) 유리의 잔골재 대체가 모르타르 시험체의 감마선 차폐에 미치는 영향 (Effect of Replacing Fine Aggregate by Cathode-Ray Tube(CRT) Waste Glass on Gamma-ray Shielding Properties of Cement Mortar Specimen)

  • 최윤석;이선민;김태상;김일순;양은익
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권7호
    • /
    • pp.172-180
    • /
    • 2019
  • 이 연구에서는 CRT 폐유리의 잔골재 대체율과 재료 물성(조성)을 달리한 모르타르의 미세구조와 감마선 차폐 효율을 평가하였다. 실험 결과에 따르면 CRT 폐유리의 잔골재 대체율이 증가할수록 50nm 크기 이하와 400nm 크기 이상의 공극 볼륨이 증가하였으며, 선헝감쇠계수는 상승하고 반가층은 작아지는 결과를 나타냈다. 또한, CRT 폐유리의 대체했을 때 강도는 감소하였으나 혼화재를 치환하여 OPC 이상의 강도값을 확보할 수 있었다.

Effect of Carbon on the Coefficient of Thermal Expansion of As-Cast Fe-3 0 wt.%Ni-12.5wt.% Co-xC Invar Alloys

  • 김봉서;유경재;김병걸;이희웅
    • 소성∙가공
    • /
    • 제8권3호
    • /
    • pp.247-247
    • /
    • 1999
  • The segregation (distribution) of nickel and the composition of its constituents influence the low thermal expansion characteristics (Invar effect) in Fe-30 wt.% Ni-12.5 wt.% Co-xC Invar alloy. The change of coefficient of the thermal expansion and magnetic properties were studied as an aspect of carbon addition causing the segregation of Ni in primary austenite of as-cast Fe-30 wt.% Ni-12.5 wt.% Co Invar alloy. The coefficient of thermal expansion of Fe-30 wt.% Ni-12.5 wt.% Co-xC Invar alloy showed its lowest value at 0.08 wt.% carbon, increased with increasing carbon content in the range of 0.08-1.0 wt.%C, kept constant at 1.0-2.0 wt.%C and decreased at carbon higher than 2.0 wt.%. The effective distribution of the coefficient of nickel in as-cast Fe-30 wt.% Ni-12.5 wt.% Co-xC Invar alloy increased with increasing carbon content. The volume fraction of they phase of Fe-30 wt.% Ni-12.5 wt.% Co-xC alloy increased with increasing carbon content. The microstructure of Fe-30 wt.% Ni-12.5 wt.% Co-xC alloy changed with the carbon content was independent of the coefficient of thermal expansion. The Curie temperature changed linearly with the carbon content and was similar to the change of the coefficient of thermal expansion. Moreover, the coefficient of thermal expansion decreased when the ratio of saturation magnetization to Curie temperature ($\sigma_s/T_c$) increased, decreasing the Curie temperature and showed a specific relationship with the magnetic properties of the Fe-30 wt.% Ni-12.5 wt.% Co-xCInvar alloy.