• 제목/요약/키워드: Volume Ratio Coefficient

검색결과 223건 처리시간 0.027초

나선코일의 열전달 특성에 관한 연구 (A Study on Heat Transfer Characteristics of Helical Coiled Tube)

  • 박종운;조동현
    • 수산해양교육연구
    • /
    • 제16권2호
    • /
    • pp.257-270
    • /
    • 2004
  • The two-phase closed thermosyphon is a heat transfer device capable of transfer large quantities of heat from a source to a sink by taking advantage of the high heat transfer rates associated with the evaporation and condensation of a working fluid within the device. A study was carried out with the performance of the heat transfer of the thermosyphon having 50, 60, 70, 80, 90 internal micro grooves in which boiling and condensation occur. A plain thermosyphon having the same inner and outer diameter as the grooved thermosyphon is also tested for comparison. Water, methanol and ethanol have been used as the working fluids. The liquid filling as the ratio of working fluid volume to total volume of thermosyphon, the inclination angle, micro grooves and operating temperature have been used as the experimental parameters. The heat flux and the boiling and the condensation heat transfer coefficient and overall heat transfer coefficient at the condenser and evaporator zone are estimated from the experimental results. The experimental results have been assessed and compared with existing correlations. Imura's and Kusuda's correlation for boiling showed in good agreement with experimental results within ${\pm}20$% in plain thermosyphon. The maximum heat transfer rate was obtained when the liquid fill ratio was about 25%. The high heat transfer coefficient was found between 25o and 30o of inclination angle for water and between 20o and 25o for methanol and ethanol. The relatively high rates of heat transfer have been achieved in the thermosyphon with internal micro grooves. The micro grooved thermosyphon having 60 grooves shows the best heat transfer coefficient in both condensation and boiling. The maximum enhancement (i.e. the ratio of the heat transfer coefficients of the micro grooved thermosyphon to plain thermosyphon) is 2.5 for condensation and 2.3 for boiling.

동심이중관내 나노유체의 자연대류열전달에 관한 수치적 연구 (NUMERICAL STUDY ON NATURAL CONVECTION HEAT TRANSFER IN A NANOFLUID FILLED CONCENTRIC ANNULUS)

  • 최훈기;박재훈;유근종
    • 한국전산유체공학회지
    • /
    • 제21권3호
    • /
    • pp.1-7
    • /
    • 2016
  • In the present study, the homogeneous model is used to simulate the natural convection heat transfer of the CuO-water nanofluid in a concentric annular enclosure. Simulations have been carried while the Rayleigh number ranges from $10^3$ to $10^6$, solid volume fraction ranges from 0.01 to 0.04 and the radius ratio varies between 0.1 and 0.7. Results are presented in the form of streamlines, isotherm patterns and averaged Nusselt numbers for different values of solid volume fraction, radius ratio of the annulus and Rayleigh numbers. The results show that by decreasing the radius ratio and/or increasing the Rayleigh number, the averaged Nusselt number increases. Also the heat transfer rate increases as increased solid volume fractions.

흰쥐의 체액량과 체중 및 무지방 체중 사이의 관계 (Relation between Various Body Fluid Volumes and Body Weight or Lean Body Mass in the Rats)

  • 안형채;남기용
    • The Korean Journal of Physiology
    • /
    • 제3권1호
    • /
    • pp.1-9
    • /
    • 1969
  • Relationships between red ceil volume $(^{51}Cr-cell)$, total blood volume (red cell volume divided by hematocrit ratio), and extracellular fluid volume (SCN distribution space) and body weight (ranging between 73 and 384 grams) or lean body mass were studied in 59 nembutalized rats. Lean body mass was determined by means of underwater weighing method on rats clipped and eviscerated. There were positive correlations between body weight or lean body mass and the absolute values (in milliliters) of body fluid volumes. Body fluid volumes expressed on the body weight or lean body mass basis, however, showed negative correlations between body weight (grams) or lean body weight (grams) with one exception. Red cell volume expressed as % lean body mass showed a positive correlation with lean body mass. The other results are summarized as follows: 1. Body density of rats was 1.0561 $(range:\;1.0123{\sim}1.0781)$ and 19.8% body weight of total body fat was obtained. The mean value of lean body mass was 80.2% body weight 2. The correlation between body weight and lean body mass was high, namely, coefficient of correlation was r=.99. 3. The correlation between the absolute value of red cell volume (ml) and body weight showed a high correlation, namely, r= 92 and between the lean body mass coefficient of correlation was r=.93. On a weight basis, red cell volume was 2.67 ml/100 gm body weight or 3.48 ml/100 gm lean body mass. The coefficient of correlation between body weight (grams) and red cell volume (% body weight) was r=-. 30. The coefficient of correlation between lean body mass (grams) and red cell volume (% lean body mass) was r=. 50. Thus, the following regression equation was obtained. Red cell volume (% lean body mass)=. 00243 Lean body mass (gm)+3. 12. 4. Total blood volume was 6.06% body weight or 7.83% lean body mass. The correlation between these blood volume values and body weight or lean body mass were negative, namely, r= -.43 and r=-.42 respectively. 5. Extracellular volume (SCN space) was 30.0% body weight or 37.2% lean body mass. These percentage values showed negative correlations between body weight or lean body mass and coefficients of correlation were r=-.40 and r=-.54 respectively. 6. The rate of increase in body weight or lean body mass is accompanied by a smaller rate of increase in blood volume and extracellular fluid volume. The rate of increase in red ceil volume paralled that of lean body mass.

  • PDF

간접포기식 침지여상에 의한 제지페수처리 (Papermill Wastewater Treatment by Indirect aerated Sebmerged Biofilter)

  • 원찬희
    • 한국환경과학회지
    • /
    • 제2권2호
    • /
    • pp.135-144
    • /
    • 1993
  • The purpose of this experimental research was focused to improve the quality of the effluent and the yielded sludge when the papermill wastewater was treated by the indirect aerated submerged biofilter as a second treatment method of papermill wastewater. Changing the various experimental factors (Nutrient additions or not, HRT, Fh ratio, recirculation ratio, etc) with indirect aerated submerged biofilter, the results are as follows. 1) because of the microbes concentration could be sustained to 9, oho man in submerged biofilter and then the volumetric organic loads could be increased to 2.7 kg-BOD/$m^3$<\TEX>/day, the reactor volume can be reduced. 2) Because of the yield coefficient(Y) and the endogenous decay coefficient(kd) were revealed 0.4 and 0.07/d, the yielded sludge volume was reduced. 3) The concentration of the sloughed sludge in the reactor was 2.62~4.01 %, so the thickener could be omited in the papermill wastewater sludge treatment process. 4) When the operating was conducted at HRT of 4hrs, the treatment efficiencies of BOD and COD were obtained 80% and 70%. 5) The range of the theoretical recirculation ratios of this reactor was 14~26. According to those ratios, at the low loads ( BOD volumetric loads is less than 0.79 kg-BOD/$m^3$<\TEX>/day, FM ratio is less than 2.0/d) the results were fitted to the theoretical recirculation ratios (14 ~26) and at the high loads the efficiency were increased to the rise of recirculation ratios.

  • PDF

Urea-SCR 단홀 Injector 노즐형상 변화에 따른 비정상유동특성의 해석적 연구 (Analytical Study on Unsteady Flow Characteristics of Urea-SCR Single Hole Injector depend on Nozzle Shape Change)

  • 황준환;박성영
    • 한국분무공학회지
    • /
    • 제24권3호
    • /
    • pp.105-113
    • /
    • 2019
  • In this paper, a study of Urea-SCR System for Dosing Injector for responding to enhanced environmental regulations has been conducted. There is a limit to the experimental approach due to the structural characteristics of the injector. In order to overcome this problem, The analysis was performed assuming unsteady turbulent flow through computational fluid analysis and the internal flow characteristics of the injector were analyzed. By changing the nozzle shape of the injector, the performance factors of the swirl injector by shape were selected and compared. The design parameters were modified by changing the diameter of the nozzle at a constant ratio compared to the base model. Swirl coefficient, outlet mass flow, and sac volume were selected as performance parameters of the injector. The Conv. model to which the taper was applied showed the dominance in mass flow rate, discharge coefficient and swirl because of the smooth fluid flow by shape. Swirl coefficient, outlet mass flow, and sac volume were selected as performance parameters of the injector. As a result of the comparison coefficient derivation with those performance parameters for comparing the performance of the model-specific injector, the Conv-140 model with the nozzle diameter expanded by 140% showed the best value of the comparison coefficient.

Effects of Physical Characteristics on a Nutrient-Chlorophyll Relationship in Korean Reservoirs

  • Hwang, Soon-Jin;Jeon, Ji-Hong;Ham, Jong-Hwa;Kim, Ho-Sub
    • 한국농공학회지
    • /
    • 제44권7호
    • /
    • pp.64-73
    • /
    • 2002
  • This study was performed to evaluate effects of physical characteristics of both watershed and reservoir on nutrient-chlorophyll relationship in Korean reservoirs. Simple linear models were developed with published data in Korea including 415 reservoirs and 11 multi-purpose dams, and physico-chemical parameters of reservoirs and characteristics relationship of models were analyzed. Theoretical residence time in Korean reservoirs was strongly correlated with the ratio of TA/ST (drainage area + surface area / storage volume) in the logarithmic function. As a result of monthly nutrients-chlorophyll-a regression analysis, significant Chl-a-TP relationship appeared during May~July. The high Chl-a yields per total phosphorus appeared during this time (R$\^$2/=0.51, p<0.001, N= 1088). Chlorophyll-a demonstrated much stronger relationship with TP. than TN. Seasonal algal-nutrient coupling were closely related with N:P ratio in the reservoir water, and it was, in turn, dependent on the monsoon climatic condition (precipitation). Based on the results of regression analysis and high N:P ratio, a major limiting factor of algal growth appeared to be phosphorus during this time. Unlikely TA/ST ratio, DA/SA ratio (drainage area f surface area) was likely to influence directly on the nutrient-Chl-a relationship, indicating that if storage volume and inflowing water volume were the same, algal biomass could be developed more in reservoirs with large surface area. Thus, DA/SA ratio seemed to be an important factor to affect the development of algal biomass in Korean reservoirs. With low determination coefficient of TP-Chl-a relationship, our findings indicated not only nutrient (phosphorus) but also other physical factors, such as DA/SA ratio, may affect algal biomass development in Korean reservoirs, where actual residence time appears to be more closely related to reservoir surface area rather than storage volume.

탄소나노튜브 입자의 길이와 혼합비율이 나노유체의 비등 열전달에 미치는 영향에 대한 연구 (A Study on the Influence of Boiling Heat Transfer of Nanofluid with Particle Length and Mixing Ratio of Carbon Nanotube)

  • 박성식;김우중;김종윤;전용한;김남진
    • 설비공학논문집
    • /
    • 제27권1호
    • /
    • pp.1-7
    • /
    • 2015
  • A boiling heat transfer system is used in a variety of industrial processes and applications, such as refrigeration, power generation, heat exchangers, cooling of high-power electronics components, and cooling of nuclear reactors. The critical heat flux (CHF) is the thermal limit during a boiling heat transfer phase change; at the CHF point, the heat transfer is maximized, followed by a drastic degradation beyond the CHF point. Therefore, Enhancement of CHF is essential for economy and safety of heat transfer system. In this study, the CHF and heat transfer coefficient under the pool-boiling state were tested using multi-wall carbon nanotubes (MWCNTs) CM-95 and CM-100. These two types of multi-wall carbon nanotubes have different sizes but the same thermal conductivity. The results showed that the highest CHF increased for both MWCNTs CM-95 and CM-100 at the volume fraction of 0.001%, and that the CHF-increase ratio for MWCNT CM-100 nanofluid with long particles was higher than that for MWCNT CM-95 nanofluid with short particles. Also, at the volume fraction of 0.001%, the MWCNT CM-100 nanofluid indicated a 5.5% higher CHF-increase ratio as well as an approximately 23.87% higher heat-transfer coefficient increase ratio compared with the MWCNT CM-95 nanofluid.

홀 형상이 막 냉각 유동에 미치는 효과에 대한 수치 해석적 연구 (A numerical simulation on the effect of hole geometry for film cooling flow)

  • 이정희;최영기
    • 대한기계학회논문집B
    • /
    • 제21권7호
    • /
    • pp.849-861
    • /
    • 1997
  • In this study, the effect of hole geometry of the cooling system on the flow and temperature field was numerically calculated. The finite volume method was employed to discretize the governing equation based on the non-orthogonal coordinate with non-staggered variable arrangement. The standard k-.epsilon. turbulence model was used and also the predicted results were compared with the experimental data to validate numerical modeling. The predicted results showed good agreement in all cases. To analyze the effect of the discharge coefficient for slots of different length to width, the inlet chamfering and radiusing holes were considered. The discharge coefficient was increased with increment of the chamfering ratio, radiusing ratio and slot length to width and also the effect of radiusing showed better result than chamfering in all cases. In order to analyze the difference between the predicted results with plenum region and without plenum region, the velocity profiles of jet exit region for a various flow conditions were calculated. The normal velocity components of jet exit showed big difference for the low slot length to width and high blowing rate cases. To analyze the flow phenomena injected from a row of inclined holes in a real turbine blade, three dimensional flow and temperature distribution of the region including plenum, hole and cross stream with flow conditions were numerically calculated. The results have shown three-dimensional flow characteristics, such as the development of counter rotating vortices, jetting effect and low momentum region within the hole in addition to counter rotating vortex structure in the cross stream.

수면 위 자유 낙하 및 충돌하는 강체 구의 수치해석 연구 (Numerical study of a freely falling rigid sphere on water surface)

  • 구본헌;판디 디팍 쿠마르;임희창
    • 한국가시화정보학회지
    • /
    • 제19권2호
    • /
    • pp.15-25
    • /
    • 2021
  • Numerical studies on the hydrodynamics of a freely falling rigid sphere in bounded and unbounded water domains are presented having investigation on the drag coefficient, normalized velocity, surface pressure and skin friction coefficient as a function of time. Two different conditions of the bounded and unbounded domains have been simulated by setting the blockage ratio. Four cases of bounded domains (B.R. = 1%, 25%, 45%, 55%, 65% and 75%) have been taken, whereas the unbounded domain has been considered with 0.01%. In the case of the bounded domain (higher values of B.R.), a substantial reduction in normalized velocity and increase in the drag coefficient have been found in presence of the bounded domain. Moreover, bounded domains also yield a significant increase in the pressure coefficient when the sphere is partially submerged, but the insignificant effect is found on the skin friction coefficient. In the case of the unbounded domain, a significant reduction in normalized velocity occurs with a decrease in Reynolds number (Re) and also increase in the drag coefficient.

개수로에서 흐름방향 유속의 횡분포 이론식에 기반한 종분산계수 개발 : II. 종분산계수 (Development of Longitudinal Dispersion Coefficient Based on Theoretical Equation for Transverse Distribution of Stream-Wise Velocity in Open Channel : Part II. Longitudinal Dispersion Coefficient)

  • 백경오
    • 한국수자원학회논문집
    • /
    • 제48권4호
    • /
    • pp.299-308
    • /
    • 2015
  • 본 연구의 목적은 하천에서 흐름방향 유속의 횡분포식에 기반하여 1차원 종분산계수를 이론적으로 유도하고 이들의 타당성을 검증하는 것이다. 이를 위해 본 논문의 전편 "I. 흐름방향 유속의 횡포식"에서는 SKM을 도입하여 삼각형 단면수로에서 횡분포식을 해석적으로 유도하였다. 본 논문의 후편 "II. 종분산계수"에서는 전편에서 유도된 유속의 횡분포식을 기반으로 1차원 종분산계수 이론식을 새롭게 개발하였다. 개발된 종분산계수 이론식을 검증하기 위해 전편과 동일한 하천에서 수행된 추적자 농도 실험 결과를 이용한 관측 종분산계수와 비교 분석하였다. 또한 개발된 종분산 계수식을 기존의 식들과 비교하여 본 연구에서 개발된 식의 차별점 및 우수성을 검토하였다. 결과적으로 무차원 종분산계수는 무차원 횡확산계수에 반비례하고, 하폭 대 수심비의 제곱에 비례하였다. 그리고 Manning의 조도계수의 제곱에 반비례함을 확인할 수 있었다.