• 제목/요약/키워드: Volume Friction

검색결과 317건 처리시간 0.021초

FRP 선박 외판재의 연삭마모 특성에 관한 상대재 거칠기의 영향 (Effect of Counterpart Roughness on Abrasive Wear Characteristics of Side Plate of FRP Ship)

  • 김형진;고성위;김재동
    • 한국해양공학회지
    • /
    • 제22권6호
    • /
    • pp.35-40
    • /
    • 2008
  • The effect of counterpart roughness on abrasive wear characteristics of side plate materials of FRP ship, which were composed of glass fiber and unsaturated polyester resin composites, were investigated at ambient temperature by pin-an-disc friction test. The friction coefficient, wear rate and cumulative wear volume of these materials against SiC abrasive paper were determined experimentally. The wear rate of these materials decreased rapidly with sliding distance and then maintained a constant value. It was increased as counterpart roughness was rougher in a wear test. The cumulative wear volume tended to increase nonlinearly with sliding distance and depended on applied load and sliding speed for these composites. It could be verified by SEM photograph of fracture surface that major failure mechanisms were overlapping layers, microcutting, deformation of resin, delamination, and cracking.

Moody 마찰계수식을 사용한 래버린스 실의 회전체 동역학적 해석 (Rotordynamic Analysis of a Labyrinth Seal Using the Moody's Friction-Factor Model)

  • 하태웅
    • 한국유체기계학회 논문집
    • /
    • 제2권3호
    • /
    • pp.52-58
    • /
    • 1999
  • The leakage and rotordynamic coefficients of see-through type gas labyrinth seals are determined using a two-control-volume-model analysis with Moody's wall-friction-factor formula which is defined with a large range of Reynolds number and relative roughness. Jet flow theory are used for the calculation of the recirculation velocity in the cavity. For the reaction force from the labyrinth seal, linearized zeroth-order and the first-order perturbation equations are developed for small motion about a centered position. The leakage and rotordynamic coefficient results of the present analysis are compared with Scharrer's theoretical analysis using Blasius' wall-friction-factor formula and Pelletti's experimental results. The comparison shows that the present analysis using Moody's wall-friction-factor formula and Scharrer's theoretical analysis using Blasius' wall-friction-factor formula give the same results for a smooth seal surface and the range of Reynolds number less than $10^5$.

  • PDF

A2024 와 SM45C 마찰용접의 열전달 해석 (Heat Transfer Analysis of Friction Welding of A2024 to SM45C)

  • 이상윤;윤병수
    • 한국공작기계학회논문집
    • /
    • 제10권1호
    • /
    • pp.65-70
    • /
    • 2001
  • The hear transfer mechanism initiating the friction welding is examined and a transient three dimensional heat conduc-tion model for the welding of two dissimilar cylindrical metal bars is investigated. The cylindrical metal bars are made of materials made of A2024 and SM 45C. Numerical simulations of heat flow are performed using the finite volume method. Respectively. Commercial FLUENT code is used in the heat flow simulation and maximum temperature and distribution of temperature are calculated. Temperature of friction welded joining face is compared with the temperature distribution measured by experiment and numerical simulation. The maximum temperature of friction welded joining face is lower than melting point of A2024-T6 aluminum alloy using insert metal. The temperature distribution of friction welded join- ing face with insert metal is more uniform than that of without inset metal.

  • PDF

전.후방 캔 압출공정의 성형특성 연구 (A Study on the Forming Characteristics of Forward and Backward Extrusions)

  • 심지훈;최호준;옥정한;함병수;황병복
    • 한국정밀공학회지
    • /
    • 제22권3호
    • /
    • pp.86-92
    • /
    • 2005
  • In this paper a forward-backward can extrusion process are analyzed by using rigid-plastic FEM simulation. FEM simulation is conducted to investigate forming characteristics such as deformation modes fur different process parameters. Design parameters such as thickness ratio, punch angle, friction factor and diameter ratio are selected to study the effect of them on the pattern of material flow. The analysis is focused mainly on the influences of the design factors on deformation pattern in terms of forming load, extruded length ratio and volume ratio. It is known for the simulation that the forming load, the length ratio and the volume ratio increase as the thickness ratio (TR), the wall thickness in forward direction to that in backward direction, decreases. The various punch angles have slight influence on the forming load. length ratio and volume ratio. However friction factor have little effect on the forming characteristics such as the forming load, volume ratio and so on. In addition the forming load increases as diameter ratio (DR), the outer diameter of a can in forward direction to that in backward direction, increases. Furthermore the extruded length ratio is lowest with a certain value of DR=0.85 among diameter ratios. Pressure distribution exerted on the die-material interface is illustrated schematically.

수차용 봉수장치의 마찰.마모특성에 관한 실험적 연구 (Experimental Study on the Friction and Wear Characteristics of Contact Sealing Unit for a Water Turbine)

  • 김청균;신인철;임광현
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.515-518
    • /
    • 2006
  • This paper presents the friction and wear characteristics of contact type sealing unit for a water turbine of a small hydro-power generation, which Is to stop a leakage of a circulating water from a outside of an impeller to an inside of a rolling bearing. The surface wear strongly affect to the seal life of a mechanical face seal. In this study, the hardness of a stainless steel in which is a heat-treated is 892.8 in Vickers hardness and the hardness of silicone carbide of SiC is 714.1 in Vickers hardness. The surface hardness of a heat-treated stainless steel is 25% high compared with that of a ceramic material of SiC. The contact modes of rubbing surfaces aye a dry friction a water film friction and a mixed friction that is contaminated by a dust, silt and moistures, etc. These two factors of a contact rubbing modes and a material property are very important parameters on the tribological performance such as a friction and wear between a seal ring and a seal seat. The experimental result shows that the surface hardness of a seal material is very important on the friction coefficient and a wear volume. Thus, the results recommend higher hardness of a seal material, which may reduce a friction loss and increase a wear life of primary seal components

  • PDF

박폭 저장력 피스톤 링 팩에 대한 마찰저감 연구 (A Study on Friction Reduction Related with the Piston Ring Pack with Thinner Width Ring and Lower Tension Ring)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제25권5호
    • /
    • pp.348-358
    • /
    • 2009
  • To satisfy the more severe emission regulation and the demand of higher fuel economy in near future, the combustion pressure and power output of engines is going to be higher. In order to get the reduction of engine emission and the higher power, it is needed the reduction of the tension and width of ring pack. The lower tension ring and the manufacturing technology of cast iron thinner width ring can bring the friction reduction between the ring and liner during engine running. Therfore, the fuel economy can be achieved. Thereafter the engine emission can be reduced. In this study, by using a developed basic computer program that predicts the inter-ring pressure, the motion of ring and the inter-ring pressure through a crevice volume model between adjacent rings, and the oil film thickness and the friction computed by lubrication theories, it is to be examined the effect of friction reduction from piston ring pack equipped with thinner width ring and lower tension ring.

스텐리스강(STS304)과 알루미늄합금(Al6351) 마찰용 접부의기계적 특성에 관한 연구 (A Study on the mechanical properties of STS304-Al6351 friction welding zone)

  • 김의환
    • 한국생산제조학회지
    • /
    • 제9권4호
    • /
    • pp.131-136
    • /
    • 2000
  • This study deals with the mechanical properties of STS304-Al351 friction welding zone. Main results are as follows ; under the condition of upset pressure 75MPa, the tensile strength of STS304-al6351 friction weld interface was higher than that of Al6351 base metal, and the highest tensile strength(290MPa) was obtained at upset pressure 125MPa. The hardness profile across the weld interface shows that the hardness of both STS304 and Al6351 is higher around the weld interface, and sharply increased hardness on the STS304 side is related with the plastic deformation of micro volume. As the result of analyzing the tensile fracture, it showed perfect soft fracture.

  • PDF

피스톤-링 팩에 관한 기초 연구 (A Basic Study on Piston-Ring Pack)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제21권2호
    • /
    • pp.83-92
    • /
    • 2005
  • A piston assembly is very important because it directly receives the energy generated during combustion process. Surely, the friction and lubrication of piston-ring pack do an important role in the performance and fuel economy of an engine. In fact, the friction loss in piston-ring pack is the biggest portion to the whole engine friction. Therefore, the improvement of lubrication quality and friction loss in piston-ring pack will be directly related with the improvement in the performance and fuel economy of an engine. Meanwhile, the oil consumption and blow-by gas through piston-cylinder-ring crevices have to be controlled as less as possible. In these two aspects, the study on the optimized design of piston-ring pack has to be carried out. In this study, for the efficient design of piston-ring pack, it is focused to develop a basic computer program that predicts the inter-ring pressure, the motion of ring and the blow-by gas through a crevice volume model between adjacent rings, and the oil film thickness and the friction computed by lubrication theories.

공압매니퓰레이터의 임피던스제어를 위한 마찰보상법 (Friction Compensation for Impedance Control of Pneumatic Manipulator)

  • 박정규
    • 대한기계학회논문집A
    • /
    • 제21권2호
    • /
    • pp.252-260
    • /
    • 1997
  • In this paper, a friction compensation method using a disturbance observer is proposed for an impedance control of pneumatic manipulator. It is assumed that the generated torque by a pneumatic actuator can be estimated based on the pressure signals and the discharge volume. In order to improve the dynamic characteristics of the pneumatic actuator driven by meter out method, we construct the inner torque control system by feeding back the generated torque. In order to reduce the influence of disturbances comprising friction torque and parameter variations of plant, the impedance control system is constructed with a disturbance observer which estimates the disturbances based on the generated torque of pneumatic actuator, the angular velocity and the reaction torque. From some experiments, it is confirmed that the proposed control system is effective to improve the robustness for the friction torque in the impedance control of a pneumatic manipulator.

Vapor Phase Lubrication을 통한 금속의 마찰 및 마멸 특성 (Characteristics of Friction and Wear of Metals Under Vapor Phase Lubrication)

  • 김대은;양지철;성인하
    • Tribology and Lubricants
    • /
    • 제18권2호
    • /
    • pp.109-116
    • /
    • 2002
  • phase lubrication can be used as an alterative lubrication method to overcome the demerits of liquid and solid lubrications. In this work, the tribological characteristics of metals are investigated under vapor phase lubrication. It was found that the friction coefficient and wear volume can be controlled efficiently by the amount of vapor phase lubricant delivered to the sliding interface. The friction coefficient could be reduced to about 0.1 under vapor lubrication. Also, depending on the amount of vapor lubrication delivered to the system, the width of the wear track could be varied between 50 to 250 Um. It is shown that vapor phase lubrication mechanism is very effective to control the friction and wear phenomena without the use of excessive oil.