• 제목/요약/키워드: Volume Fraction of Recrystallization

검색결과 21건 처리시간 0.022초

동적재료모델 및 연화모델을 도입한 SAF 2507의 열간단조 유한요소해석 (Implication of Dynamic Materials and Softening Models to the FEM Analysis of SAF2507 Hot Forging)

  • 방원규;정재영;장영원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.195-198
    • /
    • 2003
  • High temperature deformation and softening behavior of SAF 2507 super duplex stainless steel (SDSS) has been investigated in connection with an FEM analysis of hot forging process. Flow curves at various strain rates and temperatures were determined first from compression tests, and the kinetics of dynamic recrystallization were also formulated through the analysis of load relaxation test results. Applying the dynamic materials and proposed by Prasad et al., it was possible to determine the characteristics of deformation behavior effectively at a given condition of deformation. Constitutive relations and recrystallization kinetics formulated from the test results were then implemented in a commercial FEM code. Flow stress compensation formulated upon the volume fraction of recrystallization and adiabatic heating was found to improve significantly the FEA solutions in predicting the forming load and the distribution of recrystallized volume fraction after forging.

  • PDF

동적재료모델 및 연화모델을 응용한 SAF 2507 강의 열간단조 유한요소해석 (Application of Dynamic Materials and Softening Models to the FEM Analysis of Hot Forging in SAF2507 Steel)

  • 방원규;정재영;장영원
    • 소성∙가공
    • /
    • 제12권4호
    • /
    • pp.308-313
    • /
    • 2003
  • High temperature deformation and softening behavior of SAF 2507 super duplex stainless steel (SDSS) has been investigated in connection with an FEM analysis of hot forging process. Flow curves at various strain rates and temperatures were determined first from compression tests, and the kinetics of dynamic recrystallization were also formulated through the analysis of load relaxation test results. Using the dynamic materials theory proposed by Prasad, the deformation behavior was effectively determined for various conditions. Constitutive relations and recrystallization kinetics formulated from the test results were then implemented in a commercial FEM code. The forming load as well as the distribution of recrystallized volume fraction after forging was successfully predicted by means of the flow stress compensation formulated upon the volume fraction of recrystallization and adiabatic heating.

유한요소법을 이용한 Al-5wt%Mg합금의 미세조직 크기 예측 (The prediction of grain size of Al-5wt%Mg alloy by FEM)

  • 황원주;조종래;배원병
    • 소성∙가공
    • /
    • 제8권6호
    • /
    • pp.620-625
    • /
    • 1999
  • A finite element analysis is performed to predict the recrystallized volume fraction and the mean grain size in hot compression of Al-5wt%Mg alloy. In the analysis, a modeling equation of flow stress is assumed as a function of strain, strain rate, and temperature. And the influence of above varibles on flow stress is quantified by using Zener-Hollomon Parameter. In the modeling equation, effects of strain hardening and dynamic recrystallization on microstructure of Al-5wt%Mg alloy are investigated. The predicted results of recrystallized volume fraction and mean grain size are in good agreement with those of microstructures obtained from hot compression tests.

  • PDF

304 스테인리스강이 고온 유동응력곡선과 미세 조직의 예측 (Prediction on Flow Stress Curves and Microstructure of 304 Stainless Steel)

  • 한형기;유연철;김성일
    • 소성∙가공
    • /
    • 제9권1호
    • /
    • pp.72-79
    • /
    • 2000
  • Dynamic recrystallization (DRX), which may occur during hot deformation, is important for the microsturctural evolution of 304 stainless steel. Especially, the current interest in modelling hot rolling demands quantitative relationships among the thermomechanical process variables, such as strain, temperature, strain rate, and etc. Thus, this paper individually presents the relationships for flow stress and volume fraction of DRX as a function of processing variables using torsion tests. The hot torsion tests of 304 stainless steel were performed at the temperature range of 900~110$0^{\circ}C$ and the strain rate range of 5x10-2~5s-1 to study the high temperature softening behavior. For the exact prediction of flow stress, the equation was divided into two regions, the work hardening (WH) and dynamic recovery (DRV) region and the DRX region. Especially, The flow stress of DRX region could be expressed by using the volume fraction of DRX (XDRX). Since XDRX was consisted of the critical strain($\varepsilon$c) for initiation of dynamic recrystallization (DRX) and the strain for maximum softening rate ($\varepsilon$*), that were related with the evolution of microstructure. The calculated results predicted the flow stress and the microstructure of the alloy at any deformation conditions well.

  • PDF

유한요소법에 의한 열간성형공정에서 강의 미세조직변화 예측 (Prediction of Microstructural Evolution in Hot Forging of Steel by the Finite Element Method)

  • 장용순;고대철;김병민
    • 한국정밀공학회지
    • /
    • 제15권7호
    • /
    • pp.129-138
    • /
    • 1998
  • The objective of this study is to demonstrate the ability of a computer simulation of microstructural evolution in hot forging of C-Mn steels. The development of microstructure is strongly dependent on process variables and metallurgical factors that affect time history of thermodynamical variables such as temperature, strain. and strain rate during deformation. Then finite element method is applied for the prediction of microstructural evolution, and it should be coupled with heat transfer analysis to consider the change of thermodynamical properties during forming process. In this study, Yada's recrystallization model and rigid-thermoviscoplastic finite element method are employed in order to analyze microstructural evolution during hot forging process. To show the validity and effectiveness of the proposed method, experiments are accomplished and the results of experiments are compared with those of simulations.

  • PDF

AZ31 Mg 합금의 고온 성형 시 미세조직 예측 (Prediction of Microstructure during Hot-working of AZ31 Mg Alloy)

  • 이병호;이종수
    • 소성∙가공
    • /
    • 제17권2호
    • /
    • pp.117-123
    • /
    • 2008
  • In this study, optimum processing condition of rolled AZ31 Mg alloy was investigated by utilizing processing map and constitutive equation considering microstructure evolution(dynamic recrystallization) occurring during hot-working. A series of mechanical tests were conducted at various temperatures and strain rates to construct a processing map and to formulate the recrystallization kinetics in terms of grain size. Dynamic recrystallization(DRX) was observed to occur at a domain of $250^{\circ}C$ and 1/s(maximum dissipation-efficiency region). The effect of DRX kinetics on microstructure evolution was implemented in a commercial FEM code followed by remapping of the state variables. The volume fraction and grain size of deformed part were predicted using a modified FEM code and were compared with those of actual hot forged part. A good agreement was observed between the experimented results and predicted ones.

Processing map을 이용한 AZ31 Mg합금의 미세조직예측 (Prediction of Microstructure evolutions during hot-working of AZ31 Mg alloy using Processing map)

  • 이병호;이종수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.31-34
    • /
    • 2007
  • In this study, optimum processing condition of AZ31 Mg alloy was investigated utilizing processing map and constitutive equation considering microstructure evolution (dynamic recrystallization) during hot-working. A series of mechanical tests were conducted at various temperatures and strain rates to construct a processing map and to formulate the recrystallization kinetics and grain size relation. Dynamic recrystallization (DRX) was observed to occur revealing maximum intensity at a domain of $250^{\circ}C$ and 1/s. The effect of DRX kinetics on microstructure evolution was implemented in a commercial FEM code followed by remapping of the state variables. The volume fraction and grain size of deformed part were predicted using a modified FEM code and compared with those of actual hot forged one. A good agreement was observed between the experimental results and predicted ones.

  • PDF

AISI 304 스테인리스강의 동적 재결정립 예측 (Prediction for the Dynamically Recrystallized Grain Size of AISI 304)

  • 김성일;유연철
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.143-146
    • /
    • 2001
  • The evolution of dynamic recrystallization (DRX) was studied with torsion test for AISI 304 stainless steel in the temperature range of $900-1000^{\circ}C$ and strain rate range of 0.05-5/sec. The evolution of DRX was investigated with microstructural analysis and change of flow stress curve slope. The investigation of serrated grain boundaries using electron back scattered diffraction (EBSD) analysis indicated that the nucleated new DRX grain size was similar to the size of bulging part. Before the steady state, the dynamically recrystallizing grains do not remain a constant size and gradually grow to the size of fully DRX grain at steady state. The calculation of grain size was based on $X_{DRX}$ and the assumption, which the nucleated DRX grains are growing to the steady state, continuously. It was found that the calculated results agreed with the microstructure of the alloy.

  • PDF

스테인레스 304의 열간동적재결정과 미세조직 예측 (The Prediction of Dynamic Recrystallization and Grain Size of 304 Stainless Steel during Hot Deformation)

  • 권영표;조종래;이성열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 추계학술대회 논문집
    • /
    • pp.25-28
    • /
    • 2000
  • The flow stress of 304 stainless steel during high during hot forming process were determined by conducting hot compression tests at the range of 1273 K-1423 K and 0.05 /s-2.0 /s as these are typical temperature and strain rate in hot forging operation. Based on the observed phenomena, a constitutive model of flow stress was assumed as a function of strain, strain rate, temperature. Dynamic recrystallization was found to be the major softening mechanism with this conditions as previous studies. A finite element analysis was performed to predict the recrystallized volume fraction and the mean grain size in hot compression of 304 stainless steel.

  • PDF

$\gamma$-TiAl 합금의 고온변형 및 Cavity 형성 연구 (A Study on the High Temperature Deformation and the Cavity Initiation of Gamma TiAl Alloy)

  • 김정한;하태권;장영원;이종수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.172-175
    • /
    • 2001
  • The high temperature deformation behavior of two-phase gamma TiAl alloy has been investigated with the variation of temperature and ${\gamma}/{\alpha}_2$ volume fraction. For this purpose, a series of load relaxation tests and tensile tests have been conducted at temperature ranging from 800 to $1050^{\circ}C$. In the early stage of the deformation as in the load relaxation test experimental flow curves of the fine-grained TiAl alloy are well fitted with the combined curves of two processes (grain matrix deformation and dislocation climb) in the inelastic deformation theory. The evidence of grain boundary sliding has not been observed at this stage. However, when the amount of deformation is large (${\epsilon}{\approx}$ 0.8), flow curves significantly changes its shape indicating that grain boundary sliding also operates at this stage, which has been attributed to the occurrence of dynamic recrystallization during the deformation. With the increase in the volume fraction of ${\alpha}_2$-phase, the flow stress for grain matrix deformation increases since ${\alpha}_2$-Phase is considered as hard phase acting as barrier for dislocation movement. It is considered that cavity initiation is more probable to occur at ${\alpha}_2/{\gamma}$ interface rather than at ${\gamma}/{\gamma}$ interface.

  • PDF