• Title/Summary/Keyword: Volume Axial

Search Result 370, Processing Time 0.025 seconds

Comparison of 64 Channel 3 Dimensional Volume CT with Conventional 3D CT in the Diagnosis and Treatment of Facial Bone Fractures (얼굴뼈 골절의 진단과 치료에 64채널 3D VCT와 Conventional 3D CT의 비교)

  • Jung, Jong Myung;Kim, Jong Whan;Hong, In Pyo;Choi, Chi Hoon
    • Archives of Plastic Surgery
    • /
    • v.34 no.5
    • /
    • pp.605-610
    • /
    • 2007
  • Purpose: Facial trauma is increasing along with increasing popularity in sports, and increasing exposure to crimes or traffic accidents. Compared to the 3D CT of 1990s, the latest CT has made significant improvement thus resulting in higher accuracy of diagnosis. The objective of this study is to compare 64 channel 3 dimensional volume CT(3D VCT) with conventional 3D CT in the diagnosis and treatment of facial bone fractures. Methods: 45 patients with facial trauma were examined by 3D VCT from Jan. 2006 to Feb. 2007. 64 channel 3D VCT which consists of 64 detectors produce axial images of 0.625 mm slice and it scans 175 mm per second. These images are transformed into 3 dimensional image using software Rapidia 2.8. The axial image is reconstructed into 3 dimensional image by volume rendering method. The image is also reconstructed into coronal or sagittal image by multiplanar reformatting method. Results: Contrasting to the previous 3D CT which formulates 3D images by taking axial images of 1-2 mm, 64 channel 3D VCT takes 0.625 mm thin axial images to obtain full images without definite step ladder appearance. 64 channel 3D VCT is effective in diagnosis of thin linear bone fracture, depth and degree of fracture deviation. Conclusion: In its expense and speed, 3D VCT is superior to conventional 3D CT. Owing to its ability to reconstruct full images regardless of the direction using 2 times higher resolution power and 4 times higher speed of the previous 3D CT, 3D VCT allows for accurate evaluation of the exact site and deviation of fine fractures.

mechanical properties of Al-Cu-Zr alloy parts by superplastic forming (Al-Cu-Zr 합금 초소성 성형품의 기계적 성질)

  • 이영선
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.163-170
    • /
    • 1999
  • Although the bulge forming technique is currently employed in commercial superplastic forming processes, the uniaxial tensile test is still the most commonly used method for the evaluation of the superplasticity of materials due to its simplicity in testing. However, the results obtained from the uniaxial tensile test can not be applied in analyzing the characteristics of the real parts formed in multi-axial stress state. In this paper, using the tensile test specimen obtained from the square cup manufactured by superplastic forming, tensile strength and elongation have been investigated according to the strain and cavity volume fraction. From the result of experiment, tensile strength and elongation are decreased according to the strain and cavity in Al-6%Cu-0.4%Zr alloy. On condition of uniaxial stress, cavity volume fraction is increased on linear according to the increasement of thickness strain. However, on condition of biaxial stress there are critical point( E t=1.5-1.6) that the slope, the ratio of cavity volume fraction and strain, have been changed. Therefore, cavity volume fraction is different with respect to stress condition, although the same strain.

  • PDF

Three-dimensional analysis of pharyngeal airway change of skeletal class III patients in cone beam computed tomography after bimaxillary surgery

  • Kwon, Young-Wook;Lee, Jong-Min;Kang, Joo-Wan;Kim, Chang-Hyen;Park, Je-Uk
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.38 no.1
    • /
    • pp.9-13
    • /
    • 2012
  • Introduction: To evaluate the 3-dimensional changes in the pharyngeal airway of skeletal class III patients after bimaxillary surgery. Materials and Methods: The study sample consisted of 18 Korean patients that had undergone maxillary setback or posterosuperior movement and mandibular bilateral sagittal split osteotomy setback surgery due to skeletal class III malocclusion (8 males, 10 females; mean age of 28.7). Cone beam computed tomography was taken 1 month before and 6 months after orthognathic surgery. Preoperative and postoperative volumes of the nasopharyngeal, oropharyngeal, and laryngopharyngeal airways and minimum axial areas of the oropharyngeal and laryngopharyngeal spaces were measured. Moreover, the pharyngeal airway volume of the patient group that had received genioplasty advancement was compared with the other group that had not. Results: The nasopharyngeal and laryngopharyngeal spaces did not show significant differences before or after surgery. However, the oropharyngeal space volume and total volume of pharyngeal airway decreased significantly (P<0.05). The minimum axial area of the oropharynx also decreased significantly. Conclusion: The results indicate that bimaxillary surgery decreased the volume and the minimum axial area of the oropharyngeal space. Advanced genioplasty did not seem to have a significant effect on the volumes of the oropharyngeal and laryngopharyngeal spaces.

Pile Load Transition and Ground Behaviour due to Development of Tunnel Volume Loss under Grouped pile in Sand (사질토 지반에서 터널체적손실 증가에 따른 군말뚝의 하중변이와 지반거동)

  • Oh, Dong Wook;Lee, Yong Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.485-495
    • /
    • 2017
  • A development of underground space is very useful solution to slove problem occurred from ground surface enlargement in urban areas due to the growth of population, tunnelling is the most popular way and widely used. Researches regarding tunneling-induced pile-soil interactive behaviour have been conducted by many researchers. A study on pile axial force distribution due to tunnelling through laboratory model test, however, is being rarely carried out. In this study, therefore, authors investigate ground behaviour due to tunnelling below grouped pile subjected vertical load as well as pile axial force distribution. A concept of volume loss is used to express tunnel excavation, which is normally applied to 1~2% for tunnelling in soft ground. In this study, however, 10% of that applied to investigate failure mechanism. As a result of laboratory model test, a decrease of pile axial force occurs at 1.5% of volume loss, settlement of grouped pile is 1.2~4.7 times greater than the adjacent ground surface one. Ground deformations at 1.5% of volume loss are measured using Close Range Photogrammetry and compared with results from numerical analysis.

Design of intelligent estimation of composite fluid-filled shell for three layered active control structure

  • Ghamkhar, Madiha;Hussain, Muzamal;Khadimallah, Mohamed A.;Ayed, Hamdi;Naz, Muhammad Yasin;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.29 no.2
    • /
    • pp.117-126
    • /
    • 2022
  • The vibrational characteristic of three-layered cylindrical shell (CS) submerged in fluid with the ring support has been studied. The inner and outer layer is supposed to construct by isotropic layer. The composition of central layer is of functionally graded material type. Acoustic Wave condition has been utilized to present the impact of fluid. The central layer of cylindrical shell (CS) varies by volume fraction law that has been expressed in terms of polynomial. The main shell frequency equation has been obtained by theory of Love's shell and Rayleigh-Ritz technique. The oscillation of natural frequency has been examined under a variety of end conditions. The dependence of axial model has been executed with the help of characteristic beam function. The natural frequencies (NFs) of functionally graded material (FGM) shell have been observed of cylindrical shell along the shell axial direction. Different physical parameters has been used to examine the vibration characteristics due to the effect of volume fraction law. MATLAB software has been used to get result.

Design of An Axial Flow Fan with Shape Optimization (형상 최적화를 통한 축류송풍기의 설계)

  • Seo Seoung-Jin;Choi Seung-Man;Kim Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.7 s.250
    • /
    • pp.603-611
    • /
    • 2006
  • This paper presents the response surface optimization method using three-dimensional Wavier-Stokes analysis to optimize the blade shape of an axial flow fan. Reynolds-averaged Wavier-Stokes equations with $k-{\epsilon}$ turbulence model are discretized with finite volume approximations using the unstructured grid. Regression analysis is used for generating response surface, and it is validated by ANOVA and t-statistics. Four geometric variables, i.e., sweep and lean angles at mean and tip respectively were employed to improve the efficiency. The computational results are compared with experimental data and the comparisons show generally good agreements. As a main result of the optimization, the total efficiency was successfully improved. Also, detailed effects of sweep and lean on the axial flow fan are discussed.

Stall and Counter-measure for Large Size Axial-Flow Fan (대형축류팬의 실속과 대책)

  • Shim, Eui-Bo
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.70-77
    • /
    • 1998
  • The rise in pressure across the impeller blade of an axial flow fan depends on the angle of attack. At a low back pressure, the air volume will be large and the angle of attack is small. The gradual increase of the back pressure approached stall zone which is not stationary but travels blade to blade passage. In consequence, a region occurs around these blades with large vibration in the flow. To avoid these stall operation, the stall detector in the axial flow fans has been designed to detect stalling condition with a manometer or differential pressure switch by electric mechanism.

  • PDF

A Study on the Flow Characteristics Around an Axial Fan of Rotary Burner (로터리 버너의 축류형 팬 주위 유동특성 연구)

  • Ko, D.G.;Cho, D.J.;Yoon, S.J.
    • Journal of ILASS-Korea
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • The flow analysis of the axial fan of rotary burner was performed by SIMPLE(Semi Implicit Method for Pressure Linked Equations) algorithm and finite volume mothod performed in the case of 3-D, incompressible, turbulent flow. In this study, the coordinate transformation was adapted for the complex geometry of axial fan, and the standard $k-{\varepsilon}$ model and wall function method were used for analysis of turbulent flow. Multi-block grid system was used for flow field and divided into four domains such as the inlet, outlet, flow field of rotating vane, and tip clearance. Fan rotation was simulated by rotational motion using MRF(Multiple Rotating Reference Frame) in steady, incompressible state flow.

  • PDF

Theoretical Analysis of the Slipper Hydrostatic Bearing Shape in the Swash Plate Type Axial Piston Pump (사판식 유압 피스톤 펌프의 슬리퍼 정압베어링면 형상에 관한 이론해석)

  • Cho, I.S.
    • Journal of Drive and Control
    • /
    • v.10 no.1
    • /
    • pp.14-20
    • /
    • 2013
  • In the high rotational speed and pressure state, the leakage flow rate of the axial piston pump is one of the serious problems and make great reasons to decrease the volume efficiency. In this study, tribology characteristics is clarified for the hydrostatic slipper bearing in the swash plate type axial piston pump, by means of theoretical analysis for the different shape of the hydrostatic slipper bearing. It was analyzed by Mathcad software and used equal conditions at $0^{\circ}$ swash plate angle in each model. The results show that performance characteristics of the swash plate type axial piston pump are significantly influenced by the shape of the hydrostatic slipper bearing.

Numerical Optimization of a Transonic Axial Compressor with Casing Grooves for Improvement of Operating Stability (케이싱 그루브가 장착된 천음속 축류압축기의 작동 안정성 향상을 위한 수치최적화)

  • Kim, Jin-Hyuk;Choi, Kwang-Jin;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.5
    • /
    • pp.31-38
    • /
    • 2011
  • Optimization using a hybrid multi-objective evolutionary algorithm coupled with response surface approximation has been performed to improve the performance of a transonic axial compressor with circumferential casing grooves. In order to optimize the operating stability and peak adiabatic efficiency of the compressor with circumferential casing grooves, tip clearance, angle distribution at blade tip and the depth of the circumferential casing grooves are selected as design variables. Three-dimensional Reynolds-averaged Navier-Stokes equations with the shear stress transport turbulence model are discretized by finite volume approximations. The trade-off between two objectives with the interaction of blade and casing treatment is determined and discussed with respect to the representative clusters in the Pareto-optimal solutions compared to the axial compressor without the casing treatment.