• Title/Summary/Keyword: Voltage stabilization

Search Result 164, Processing Time 0.037 seconds

A Study on the Output Stabilization of the Nd:YAG Laser by the Monitoring of Capacitor Charging Voltage

  • Noh, Ki-Kyong;Song, Kum-Young;Park, Jin-Young;Hong, Jung-Hwan;Park, Sung-Joon;Kim, Hee-Je
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.3
    • /
    • pp.96-100
    • /
    • 2004
  • The Nd: YAG laser is commonly used throughout many fields such as accurate material processing, IC marking, semiconductor annealing, medical operation devices, etc., due to the fact that it has good thermal and mechanical properties and is easy to maintain. In materials processing, it is essential to vary the laser power density for specific materials. The laser power density can be mainly controlled by the current pulse width and pulse repetition rate. It is important to control the laser energy in those fields using a pulsed laser. In this paper we propose the constant-frequency current resonant half-bridge converter and monitoring of capacitor charging voltage. This laser power supply is designed and fabricated to have less switching loss, compact size, isolation with primary and secondary transformers, and detection of capacitor charging voltage. Also, the output stabilization characteristics of this Nd: YAG laser system are investigated. The test results are described as a function of laser output energy and flashlamp arc discharging constant. At the energy storage capacitor charges constant voltage, the laser output power is 2.3% error range in 600[V].

An Experimental Study on the Implementation and Stabilization of Atmospheric Pressure Glow Discharge (대기압 글로우 방전의 구현 및 안정화에 대한 실험적 연구)

  • Choi, Sang-Won
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.4
    • /
    • pp.42-46
    • /
    • 2008
  • Ionizers are essential in various areas of manufacturing industries to protect electrostatic hazards and to reduce inferior products. For ion sources used in the charge neutralizers, there are corona discharge, soft X-ray, ultraviolet and glow discharge. Glow discharge has lots of attractive properties, such as lower discharge sustaining voltage, no generation of ozone, and so on. In this paper, we did an experimental study to trace the mechanism and stabilization of atmospheric pressure glow discharge using the several size and shape of electrodes. As an experimental result, to sustain conditions of atmospheric pressure glow discharge is that discharge voltage is 360V, discharge current is 12mA, apply frequency is 1kHz between electrodes when positive electrode is molybdenum(Mo) and negative electrode is copper(Cu). We confirmed that the mechanism and stabilization of atmospheric glow discharge is deeply concerned with the shape and material of electrode for discharge. Especially, glow discharge in atmospheric pressure was well generated and sustained according with the physical properties used electrode materials, example melting point, thermal conductivity, and etc.

Control Strategy for a Grid Stabilization of a Large Scale PV Generation System based on German Grid Code (독일 계통 연계 규정에 기반 된 대용량 태양광 발전 시스템의 계통 안정화를 위한 제어 전략)

  • Bae, Young-Sang;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.41-50
    • /
    • 2014
  • The rising penetration of renewable energy resulted in the development of grid-connected large-scale power plants. Therefore, grid stabilization, which depends on the system-type or grid of each country, plays an important role and has been strengthened by different grid codes. With this background, VDE-AR-N 4105 for photovoltaic (PV) systems connected to the low-voltage grid and the German Association of Energy and Water Industries (BDEW) introduced the medium-voltage grid code for connecting power plants to the grid and they are the most stringent certifications. In this paper, an optimal control strategy scheme for three-phase grid-connected PV system is enhanced with VDE-AR-N 4105 and BDEW grid code, where both active/reactive powers are controlled. Simulation and experimental results of 100kW PV inverter are shown to verify the effectiveness of the proposed implemental control strategy.

A Study on Phenomena of Watertree and Dielectric Breakdown in XLPE (XLPE의 수트리와 절연파괴 현상에 관한 연구)

  • 이성일
    • Journal of the Korea Safety Management & Science
    • /
    • v.3 no.4
    • /
    • pp.45-52
    • /
    • 2001
  • In order to Investigate water tree degradation behavior on XLPE cable, direct voltage of 200 to 800V has been applied to the material at 5$0^{\circ}C$~10$0^{\circ}C$, and the water tree property has been correlated with voltage and temperature. The leakage current was increase as temperature increased and the Ohm's law was generally satisfied in this experiment though some experimental errors were found. The leakage current was decreased and reached to the stable state with time. It was also shown that the time for the stabilization of leakage current was lessened as voltage increased

  • PDF

A Study on the Coordination Control Algorithm of Step Voltage Regulator and Battery Energy Storage System for Voltage Regulation in Distribution System (배전계통의 전압안정화를 위한 선로전압조정장치와 전지전력저장장치의 협조제어 알고리즘에 관한 연구)

  • Kim, Byung-Ki;Wang, Jong-Yong;Park, Jea-Bum;Choi, Sung-Sik;Ryu, Kyung-Sang;Rho, Dae-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.269-278
    • /
    • 2016
  • In order to maintain customer voltages within allowable limit($220{\pm}13V$) as much as possible, tap operation strategy of SVR(Step Voltage Regulator) installed in distribution system is very important, considering the scheduled delay time(30 sec) of SVR. However, the compensation of BESS(Battery Energy Storage System) during the delay time of SVR is being required because the customer voltages in distribution system interconnected with PV(Photovoltaic) system have a difficultly to be kept within allowable limit. Therefore, this paper presents the optimal voltage stabilization method in distribution system by using coordination operation algorithm between BESS and SVR. It is confirmed that customer voltage in distribution system can be maintained within allowable limit($220{\pm}13V$).

Power Stabilization Catenary line ESS of KTX High Speed Train (KTX 고속전철 급전선로의 ESS를 통한 전원안정화)

  • Pyo, Se-Wan;Lee, Eun-Kyu;Kim, Sang-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2021-2030
    • /
    • 2011
  • This thesis paper is on the management of Energy Storage System for the catenary source stabilization of KTX's high-speed train section. It is the algorism that is to utilize on the voltage drop at the end and peak power suppression of the substation by supplying from the end, compensating consuming energy when the KTX retrogresses, by installing Energy Storage System at the end of the substation where is the section post. The algorism which this thesis is to utilize is verified through the catenary voltage modeling and simulation of the power conversion system, and the system validity of the Korail's Yongjeong section post which is currently in management is in the application review phase.

  • PDF

Stabilization of Fixed Speed Wind Generator by using Variable Speed PM Wind Generator in Multi-Machine Power System

  • Rosyadi, Marwan;Takahashi, Rion;Muyeen, S.M.;Tamura, Junji
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.111-119
    • /
    • 2013
  • This paper present stabilization control of fixed speed wind generator by using variable speed permanent magnet wind generator in a wind farm connected with multi-machine power system. A novel direct-current based d-q vector control technique of back to back converter integrated with Fuzzy Logic Controller for optimal control configuration is proposed, in which both active and reactive powers delivered to a power grid system are controlled effectively. Simulation analyses have been performed using PSCAD/EMTDC. Simulation results show that the proposed control scheme is very effective to enhance the voltage stability of the wind farm during fault condition.

Design of an Adaptive Nonlinear Backstepping Controller for Transient Stabilization of Power Systems (전력 계통 과도상태 안정화를 위한 비선형 적응 백스테핑 제어기 설계)

  • Kim, Dong-Heon;Kim, Hong-Pil;Yang, Hae-Won
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.7
    • /
    • pp.332-338
    • /
    • 2000
  • In this paper, a robust nonlinear excitation controller is proposed to achieve both voltage regulation and system stability enhancement for single machine-infinite power systems. The proposed method employs backstepping technique and combines this with an adaptation algorithm for estimating the effective reactance of transmission line, thereby leading to adaptive nonlinear control. Simulation results show that power that angle stabilization as well as voltage regulation is achieved in a satisfactory manner, regardless of the system operating conditions and system structure.

  • PDF

A Study on Multi Level Load Shedding Control Scheme Strategy for Stabilization of the Korean Power System (국내 전력계통 안정화를 위한 다단계 부하차단 제어전략 수립에 관한 연구)

  • Lee, Yun-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.4
    • /
    • pp.255-261
    • /
    • 2016
  • Korean Power System are operating a load shedding system to prevent voltage instability phenomenon caused by severe line contingencies. In order to apply the load shedding scheme should be selected a location, amount, delay time. Current load shedding system is load shedding amount that has been calculated in the steady-state analysis to load shed the total amount in first level, load shedding amount calculated in advance, it is possible to perform an unnecessary load shedding. In this paper, set a multi-level load shedding control strategy step-by-step selection of load shedding amount for the prevention of excessive load shedding. In addition, through a voltage resilience analysis of the power system by applying motor load ratio and sensitivity parameter to selection the multi level load shedding ratio and delay time. For this reason, to take advantage of the limit data of interchange power, by utilizing interface power flow data to set a multi-level load shedding control strategy for the stabilization of the Korean Power System.