• Title/Summary/Keyword: Voltage source converter

Search Result 638, Processing Time 0.024 seconds

Design and Simulation of STATCOM for Compensation of Load Power Factor (부하 역률보상용 STATCOM의 설계 및 시뮬레이션)

  • Lee, Dong-Ju;Lee, Eun-Woong;Lee, Jong-Han;Kim, Jong-Gyeum
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.60-62
    • /
    • 2005
  • The operation and control scheme of reactive power compensator (so called STATCOM) based on voltage source converter is theoretically reviewed. STATCOM for compensation of load power factor is designed and its operation is verified by simulation.

  • PDF

A New High Frequency Linked Soft-Switching PWM DC-DC Converter with High and Low Side DC Rail Active Edge Resonant Snubbers for High Performance Arc Welder

  • Kang, Ju-Sung;Fathy, Khairy;Hong, Doo-Sung;Suh, Ki-Young;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.281-283
    • /
    • 2006
  • This paper presents two new circuit topologies of DC bus lineside active edge resonant snubber assisted soft-switching PWM full-bridge DC-DC converter acceptable for either utility AC 200V-rms or AC 400V-rms input voltage source. All the active power switches in the full-bridge arms and DC busline can achieve ZCS turn-on and ZVS turn-off commutations and the total turn-off switching power losses of all active switches can be reduced for high-frequency switching action. The effectiveness of these new DC-DC converters topologies is proved for low voltage and large current high efficiency DC-DC power supplies as TIG arc welding machine from a practical point of view.

  • PDF

Vector Control of Single Phase Induction Motor using PV System (PV 시스템을 이용만 단상유도전동기의 벡터제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Jung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.49-58
    • /
    • 2009
  • This paper presents the vector control of single phase induction motor(SPIM) to operate water pumping system using PV system with a maximum power point tracking(MPPT). The water pumping system uses a variable speed SPIM driven a centrifugal pump by field oriented control(FOC) inverter. The MPPT using a DC-DC converter controlled the duty cycle to track maximum power from PV under different insolation conditions. The duty cycle directly relate with a flux producing current control($i_{ds}$). The FOC inverter uses a current control voltage source inverter(CC-VSI). The simulation results are shown that the characteristics and performance of drive system, which varies as each conditions of light by expresses in voltage($V_{dq}$), current($I_{dq}$), speed of motor and torque.

Automatic Command Mode Transition Strategy of Direct Power Control for PMSG MV Offshore Wind Turbines (자동 지령모드절환 기능을 갖춘 PMSG MV 해상 풍력 발전기의 직접전력제어 방법)

  • Kwon, Gookmin;Suh, Yongsug
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.238-248
    • /
    • 2016
  • In this study, an automatic command mode transition strategy of direct power control (DPC) is proposed for permanent magnet synchronous generators (PMSGs) medium-voltage (MV) offshore wind turbines (WTs). Benchmarking against the control methods are performed based on a three-level neutral-point-clamped (NPC) back-to-back type voltage source converter (VSC). The ramping rate criterion of complex power is utilized to select the switching vector in DPC for a three-level NPC converter. With a grid command and an MPPT mode transition strategy, the proposed control method automatically controls the generated output power to satisfy a grid requirement from the hierarchical wind farm controller. The automatic command mode transition strategy of DPC is confirmed through PLECS simulations based on Matlab. The simulation result of the automatic mode transition strategy shows that the proposed control method of VOC and DPC achieves a much shorter transient time of generated output power than the conventional control methods of MPPT and VOC under a step response. The proposed control method helps provide a good dynamic performance for PMSGs MV offshore WTs, thereby generating high quality output power.

Input Impedances of PWM DC-DC Converters: Unified Analysis and Application Example

  • Pidaparthy, Syam Kumar;Choi, Byungcho
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2045-2056
    • /
    • 2016
  • The input impedances of pulse width modulated (PWM) dc-to-dc converters, which dictate the outcomes of the dynamic interaction between dc-to-dc converters and their source subsystem, are analyzed in a general and unified manner. The input impedances of three basic PWM dc-to-dc converters are derived with both voltage mode control and current mode control. This paper presents the analytical expressions of the 24 input impedances of three basic PWM dc-to-dc converters with the two different control schemes in a factorized time-constant form. It also provides a comprehensive reference for future dynamic interaction analyses requiring knowledge of the converters' input impedances. The theoretical predictions of the paper are all supported by measurements on prototype dc-to-dc converters. The use of the presented results is demonstrated via a practical application example, which analyzes the small-signal dynamics of an input-filter coupled current-mode controlled buck converter. This elucidates the theoretical background for the previously-reported eccentric behavior of the converter.

A Study of Circulating Current in MMC based HVDC System under an Unbalanced Grid Condition (불평형 전원 조건에서 MMC 기반 HVDC 시스템 순환전류에 관한 연구)

  • Do, Won-Seok;Kim, Si-Hwan;Kim, Tae-Jin;Kim, Rae-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.8
    • /
    • pp.1193-1201
    • /
    • 2015
  • This paper presents a study of circulating current of modular multi-level converter (MMC) based a high voltage direct current (HVDC) system under unbalanced grid conditions. Due to the connection of a dependent DC source in each phase, the MMC system inherently generates the power ripple of double-line-frequency components in the AC-side and as a result, the additional sinusoidal current named circulating current flows through the each arm. Reliability improvement of HVDC system under an unbalanced grid condition is one of the important criteria. Generally, the modeling of the circulating current is based on the power relation between DC-side and AC-side. However, the method is not perfectly matched in the MMC system due to the difference of the structural characteristic. In this paper, improved modeling method of circulating current is proposed, which is based on the inner arm power. The proposed method is verified by several simulations to have good agreement of the circulating current components.

Development of a Low Frequency Operating Electronic Ballast for Fish Attracting Lamps (저주파 구동형 집어등용 전자식 안정기 개발)

  • Kim, Il-Kwon;Song, Jae-Yong;Park, Dae-Won;Seo, Hwang-Dong;Kil, Gyung-Suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.273-276
    • /
    • 2005
  • This paper presents an electronic ballast using a step down converter, a low frequency inverter for high pressure discharge lamp. The proposed ballast is composed of a full-wave rectifier, a step down converter operated as a current source with power regulation and a low frequency inverter with ignition circuit. The ignition circuit generates high voltage pulse of 1${\sim}$2[kV] peak, 130[Hz]. Moreover, it is able to reignite at regular intervals by protective circuit. As experimental results on the test, lamp voltage, current and consumption power are measured 132.5[V], 7.6[A] and 1,005[W], respectively. It was confirmed that the designed ballast operate the lamp with a constant power.

  • PDF

Current Limiting and Interrupting Operation of Hybrid Self-Excited Type Superconducting DCCB

  • Choi, S.J.;Lim, S.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.55-59
    • /
    • 2018
  • Currently, the development of industry makes needs larger electric supply. Providers must consider the efficiency about losses and reliability of the system. In this case, DC power system can save electrical energy; long-distance transmission line losses. Relevance to switch technology with a voltage-source converter (VSC) in AC-DC conversion system have been researched. But, protection device of DC-link against fault current is still needed to study much. VSC DC power system is vulnerable to DC-cable short-circuit and ground faults, because DC-link has a huge size of capacitor filter which releases extremely large current during DC faults. Furthermore, DC has a fatal flaw that current zero crossing is nonexistence. To interrupt the DC, several methods which make a zero crossing is used; parallel connecting self-excited series LC circuit with main switch, LC circuit with power electronic device called hybrid DC circuit breaker. Meanwhile, self-excited oscillator needs a huge size capacitor that produces big oscillation current which makes zero crossing. This capacitor has a quite effective on the price of DCCB. In this paper, hybrid self-excited type superconducting DCCB which are using AC circuit breaker system is studied by simulation tool PSCAD/EMTDC.

Comparative performance evaluation of 10kV IGCTs in 3L NPC and ANPC Converter in PMSG MV Wind Turbines (PMSG 풍력발전기용 3L NPC와 ANPC 컨버터에서의 10kV IGCT 성능 비교 평가)

  • Lyngdoh, Amreena Lama;Suh, Youngsug;Park, Byoung-Gun;Kim, Jiwon
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.86-88
    • /
    • 2018
  • The three level(3L) neutral point clamped (NPC) voltage source converter (VSC) topology is widely used for grid interface in high power wind energy due to its superior performance as compared to the two level(2L) VS. However, one of the major drawbacks of this topology is the unequal dispersion of loss and therefore the junction temperature among the power devices. The 3L ANPC topology derived from the NPC topology was proposed to resolve this drawback of unequal loss profile of 3L NPC. The 3L ANPC can work under various switching strategies. In this paper a comparative study of the various switching strategies of 3L ANPC using the recently developed 10kV IGCTs which has the capability to raise the current and voltage rating of the wind turbines is carried out. The comparison is performed using ABB make 10kV IGCT 5SHY17L9000 and PLECs simulations.

  • PDF

Line-Interactive DVR Using Multi-Level H-Bridge Inverter (멀티-레벨 H-Bridge 인버터를 이용한 Line-Interactive DVR)

  • Kang Dae-Wook;Woo Sung-Min;Kim Tae-Jin;Choi Chang-Ho;Hyun Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2001.12a
    • /
    • pp.139-143
    • /
    • 2001
  • Recently, the interest on power quality has been hot issue. The equipments cause voltage disturbance and has become more sensitive to the voltage disturbance. This paper deals with 5-Level H-Bridge Line-Inter active Dynamic Voltage Restorer(LIDVR) system. The LIDVR has following advantages in comparison with the DVR with series injection transformer It has the power factor near to unity under normal source voltage, can compensate the harmonic current of the load and the instant interruption, and has the fast response. First, the construction, the operation mode and algebraic modeling of LIDVR are reviewed. And then a voltage controller is proposed to get sinusoidal load voltage with constant amplitude. To find PWM method suitable for H-Bridge converter, two PWM methods are compared and analyzed. Finally, simulation results verify the proposed 5-level H-Bridge LIDVR system.

  • PDF