• Title/Summary/Keyword: Voltage sensing

Search Result 522, Processing Time 0.019 seconds

The Risk Assessment of Carbon Monoxide Poisoning by Gas Boiler Exhaust System and Development of Fundamental Preventive Technology (가스보일러 CO중독 위험성 예측 및 근원적 예방기술 개발)

  • Park, Chan Il;Yoo, Kee-Youn
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.3
    • /
    • pp.27-38
    • /
    • 2021
  • We devised the system to automatically shutdown the boiler and to fundamentally block the harmful gases, including carbon monoxide, into the indoor when the exhaust system swerves: (1) The discharge pressure of the exhaust gas decreases when the exhaust pipe is disconnected. The monitoring system of the exhaust pipe is implemented by measuring the output voltage of APS(Air Pressure Sensor) installed to control the amount of combustion air. (2) The operating software was modified so that when the system recognizes the fault condition of a flue pipe, the boiler control unit displays the fault status on the indoor regulator while shutting down the boiler. In accordance with the ventilation facility standards in the "Rules for Building Equipment Standards" by the Ministry of Land, Infrastructure and Transport, experiments were conducted to ventilate indoor air. When carbon monoxide leaked in worst-case scenario, it was possible to prevent poisoning accidents. However, since 2013, the number of indoor air exchange times has been mitigated from 0.7 to 0.5 times per hour. We observed the concentration exceeding TWA 30 ppm occasionally and thus recommend to reinforce this criterion. In conclusion, if the flue pipe fault detection and the indoor air ventilation system are introduced, carbon monoxide poisoning accidents are expected to decrease significantly. Also when the manufacturing and inspection steps, the correct installation and repair are supplemented with the user's attention in missing flue, it will be served to prevent human casualties from carbon monoxide poisoning.

Effect of Total Resistance of Electrochemical Cell on Electrochemical Impedance of Reinforced Concrete Using a Three-Electrode System (3전극방식을 활용한 철근 콘크리트의 교류임피던스 측정 시 전기화학 셀저항의 영향)

  • Khan, Md. Al-Masrur;Kim, Je-Kyoung;Yee, Jurng-Jae;Kee, Seong-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.82-92
    • /
    • 2022
  • This study aims to investigate the effect of total electrochemical cell resistance (TECR) on electrochemical impedance (EI) measurements of reinforced concrete (RC) by electrochemical impedance spectroscopy (EIS) using a three-electrode system. A series of experimental study is performed to measure electrochemical behavior of a steel bar embedded in a concrete cube specimen, with a side length of 200 mm, in various experimental conditions. Main variables include concrete dry conditions, coupling resistance between sensing electrodes and concrete surface, and area of the counter electrode. It is demonstrated that EI values remains stable when the compliant voltage of a measuring device is sufficiently great compared to the potential drop caused by TECR of concrete specimens. It is confirmed that the effect of the coupling resistance of TECR is far more influential than other two factors (concrete dry conditions and area of the counter electrode). The results in this study can be used as a fundamental basis for development of a surface-mount sensor for corrosion monitoring of reinforced concrete structures exposed to wet-and-dry cycles under marine environment.