• Title/Summary/Keyword: Voltage Switching.

Search Result 3,312, Processing Time 0.027 seconds

CoolSiCTM SiC MOSFET Technology, Device and Application

  • Ma, Kwokwai
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.577-595
    • /
    • 2017
  • ${\bullet}$ Silicon Carbide (SiC) had excellent material properties as the base material for next generation of power semiconductor. In developing SiC MOSFET, gate oxide reliability issues had to be first overcome before commercial application. Besides, a high and stable gate-source voltage threshold $V_{GS(th)}$ is also an important parameter for operation robustness. SiC MOSFET with such characteristics can directly use existing high-speed IGBT gate driver IC's. ${\bullet}$ The linear voltage drop characteristics of SiC MOSFET will bring lower conduction loss averaged over full AC cycle compared to similarly rate IGBT. Lower switching loss enable higher switching frequency. Using package with auxiliary source terminal for gate driving will further reduce switching losses. Dynamic characteristics can fully controlled by simple gate resistors. ${\bullet}$ The low switching losses characteristics of SiC MOSFET can substantially reduce power losses in high switching frequency operation. Significant power loss reduction is also possible even at low switching frequency and low switching speed. in T-type 3-level topology, SiC MOSFET solution enable three times higher switching freqeuncy at same efficiency.

  • PDF

Optimal Voltage Vector Selection Method for Torque Ripple Reduction in the Direct Torque Control of Five-phase Induction Motors

  • Kang, Seong-Yun;Shin, Hye Ung;Park, Sung-Min;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1203-1210
    • /
    • 2017
  • This paper presents an improved switching selection method for the direct torque control (DTC) of five-phase induction motors (IMs). The proposed method is conducted using optimal switching selection. A five-phase inverter has 32 voltage vectors which are divided into 30 nonzero voltage vectors and two zero voltage vectors. The magnitudes of the voltage vectors consist of large, medium, and small voltage vectors. In addition, these vectors are related to the torque response and torque ripple. When a large voltage vector is selected in a drive system, the torque response time decreases with an increased torque ripple. On the other hand, when a small voltage vector is selected, the torque response time and torque ripple increase. As a result, this paper proposes an optimal voltage vector selection method for improved DTC of a five-phase induction machine depending on the situation. Simulation and experimental results verify the effectiveness of the proposed control algorithm.

A Study on the Switching and Retention Characteristics of PLT(5) Thin Films (PLT(5) 박막의 Switching 및 Retention 특성에 관한 연구)

  • Choi Joon Young;Chang Dong Hoon;Kang Seong Jun;Yoon Yung Sup
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.367-370
    • /
    • 2004
  • We fabricated PLT(5) thin film on $Pt/TiO_x/SiO_2/Si$ substrate by using sol-gel method and investigated leakage current, switching and retention properties. The leakage current density of PLT(5) thin film was $3.56{\times}10^{-7}A/cm^2$ at 4V. In the examination of switching properties, pulse voltage and load resistance were $2V{\~}5V$ and $50{\Omega}{\~}3.3k{\Omega}$, respectively. Switching time had a tendency to decrease from 520ns to 140ns with the increase of pulse voltage, and also the time was increased from 140ns to $13.7{\mu}s$ with the increase of load resistance. The activation energy obtained from the relation of applied pulse voltage and switching time was about 143kV/cm. The error of switched charge density between hysteresis loop and experiment of polarization switching was about $10\%$. Also, polarization in retention was decreased as much as about $8\%$ after $10^5$s.

  • PDF

A ZV-ZCT Boost Converter using an Auxiliary Resonant Circuit (보조 공진회로를 갖는 영전압-영전류 천이 부스트 컨버터)

  • Jung, Doo-Yong;Kim, Jun-Gu;Ryu, Dong-Kyun;Song, In-Beom;Jung, Yong-Chae;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.298-305
    • /
    • 2012
  • This paper proposes a soft switching boost converter with an auxiliary resonant circuit. The auxiliary resonant circuit is added to a general boost converter and that is composed of one switch, one diode, one inductor and two capacitors. The resonant network helps the main switch to operate with a zero voltage switching(ZVS) and auxiliary switch also operates under the zero voltage and zero current conditions. The soft switching range is extended by the auxiliary switch and it is possible to control the proposed converter with a pulse width modulation(PWM). The ZVS and ZCS techniques make switching losses decreased and efficiency of the system improved. A theoretical analysis is verified through the simulation and experiment.

An Improved Switching Topology for Single Phase Multilevel Inverter with Capacitor Voltage Balancing Technique

  • Ponnusamy, Rajan Soundar;Subramaniam, Manoharan;Irudayaraj, Gerald Christopher Raj;Mylsamy, Kaliamoorthy
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.115-126
    • /
    • 2017
  • This paper presents a new cascaded asymmetrical single phase multilevel converter with a reduced number of isolated DC sources and power semiconductor switches. The proposed inverter has only two H-bridges connected in cascade, one switching at a high frequency and the other switching at a low frequency. The Low Switching Frequency Inverter (LSFI) generates seven levels whereas the High Switching Frequency Inverter (HSFI) generates only two levels. This paper also presents a solution to the capacitor balancing issues of the LSFI. The proposed inverter has lot of advantages such as reductions in the number of DC sources, switching losses, power electronic devices, size and cost. The proposed inverter with a capacitor voltage balancing algorithm is simulated using MATLAB/SIMULINK. The switching logic of the proposed inverter with a capacitor voltage balancing algorithm is developed using a FPGA SPATRAN 3A DSP board. A laboratory prototype is built to validate the simulation results.

Three-Phase Soft Switching Sinewave Inverter with Bridge Power Module Package Configurated Auxiliary Resonant AC Link Snubber

  • Iyomori Hisashi;Nagai Shin-ichiro;Shiraishi Kazuhiro;Ahmed Tarek;Eiji Hiraki;Mutsuo Nakaoka
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.507-510
    • /
    • 2003
  • This paper presents a novel prototype of tile three-phase bridge power block module type a auxiliary resonant AC link snubber circuit, which is effectively used for the three-phase voltage source type sinewave soft switching PWM inverter using IGBTs. Its operating principle Is described for current source load model, along with its practical design approach based on the simulation data. The performance evaluation of the three-phase voltage source type snewave soft switching PWM inverter incorporating a single three-phase bridge mo여le of active auxiliary resonant AC link snubber treated here Is illustrated, which is concerned with power duality efficiency power loss analysis. This inverter is discussed as compared with those of tile three-phase voltage source type sinewave hard switching PWM inverter. The power loss analysis of this soft switching PWM Inverter using IGBT power modules is evaluated on the basis of the measured v-i characteristics and switching power losses of IGBT, and antiparaliel diodes. The practical effectiveness of this inverter is proven by the power loss analysis for distributed power supply.

  • PDF

Analysis of Effect on Personnel Computer in case of turning off Power supply of Circuit Breaker for Low Voltage (저압용차단기 전원 개폐시 개인용 PC에 미치는 영향 분석)

  • Gil, Hyoung-Jun;Shong, Kil-Mok;Kim, Young-Seok;Kim, Chong-Min
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.12
    • /
    • pp.124-129
    • /
    • 2014
  • This paper describes the analysis of the effect on personnel computer in case of turning off power supply of main breaker in general electrical installation. In order to analyze the effect on personnel computer in case of turning off the power supply of main breaker, the switching impulse generator has been designed and fabricated which makes it possible to evaluate the effect on electrical product by switching impulse. The switching impulse tests were carried out for personnel computer according to applied voltage and number of switching impulse. As a consequence, switching impulse had not a significant influence on personnel computer in this study. The varistor of power input section functions as a protection of switching impulse as well as lightning impulse. The results will be used to related organization, and electrical product manufacturer, and residents.

Study on a Novel Switching Pattern Current Control Scheme Applied to Three-Phase Voltage-Source Converters

  • Zhao, Hongyan;Li, Yan;Zheng, Trillion Q.
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1563-1576
    • /
    • 2017
  • This paper presents a novel switching pattern current control (SP-CC) scheme, which is applied in three-phase voltage-source converters (VSCs). This scheme can select the optimal output switching pattern (SP) by referring the basic principle of space vector modulation (SVM). Moreover, SP-CC is a method without a carrier wave. Thus, the implementation process is concise and easy. When compared with the conventional hysteresis current control (C-HCC) and the space vector-based hysteresis current control (SV-HCC), the SP-CC has the performances of faster dynamic response of C-HCC and less switching number (SN) of SV-HCC. In addition, it has less harmonic contents in the three-phase current, along with a lower switching loss and a higher efficiency. Moreover, the hysteresis bandwidth and Clarke conversion are not required in the SP-CC. The effectiveness of the presented SP-CC is verified by simulation and experimental test results. In addition, the advantages of the SP-CC, when compared with the C-HCC and SV-HCC, are verified as well.

A study on the Conducted Noise Reduction in Random PWM (Random PWM 기법을 이용한 전도노이즈 저감)

  • Jeong, Dong-Hyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.10b
    • /
    • pp.154-158
    • /
    • 2006
  • The switching-mode power converter has been widely used because of its features of high efficiency and small weight and size. These features are brought by the ON-OFF operation of semiconductor switching devices. However, this switching operation causes the surge and EMI(Electromagnetic Interference) which deteriorate the reliability of the converter themselves and entire electronic systems. This problem on the surge and noise is one of the most serious difficulties in AC-to-DC converter. Random Pulse Width Modulation (RPWM) is peformed by adding a random perturbation to switching instant while output-voltage regulation of converter is performed. RPWM method for reducing conducted EMI in single switch three phase discontinuous conduction mode boost converter is presented. The more white noise is injected, the more conducted EMI is reduced. But output-voltage is not sufficiently regulated. This is the reason why carrier frequency selection topology is proposed. In the case of carrier frequency selection, output-voltage of steady state and transient state is fully regulated. A RPWM control method was proposed in order to smooth the switching noise spectrum and reduce it's level. Experimental results are verified by converter operating at 300v/1kW with $5%{\sim}30%$ white noise input. Spectrum analysis is performed on the Phase current and the CM noise voltage. The former is measured with Current Probe and the latter is achieved with LISN, which are connected to the spectrum analyzer respectively.

  • PDF

The Dimmable Single-stage Asymmetrical LLC Resonant LED Driver with Low Voltage Stress Across Switching Devices

  • Kim, Seong-Ju;Kim, Young-Seok;Kim, Choon-Taek;Lee, Joon-Min;La, Jae-Du
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2031-2039
    • /
    • 2015
  • In the LED lighting industry, the dimming function in the LED lamp is required by demands of many consumers. To drive this LED lighting, various types of power converters have been applied. Among them, an LLC resonant converter could be applied for high power LED lighting because of its high efficiency and high power density, etc. The function of power factor correction (PFC) might be added to it. In this paper, a dimmable single-stage asymmetrical LLC resonant converter is proposed. The proposed converter performs both input-current harmonics reduction and PFC using the discontinuous conduction mode (DCM). Also, the lower voltage stress across switching devices as well as the zero voltage switching (ZVS) in switching devices is realized by the proposed topology. It can reduce cost and has high efficiency of the driver. In addition, the regulation of the output power by variable switching frequency can vary the brightness of a light. In the proposed converter, one of the attractive advantages doesn’t need any extra control circuits for the dimming function. To verify the performance of the proposed converter, simulation and experimental results from a 300W prototype are provided.