• 제목/요약/키워드: Voltage Switching.

검색결과 3,312건 처리시간 0.023초

강압형과 하프 브리지 직렬형 DC-DC 컨버터 (Buck and Half Bridge Series DC-DC Converter)

  • 김창선
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권12호
    • /
    • pp.616-621
    • /
    • 2005
  • We considered of the buck and half bridge series DC-DC converter. It has good applications in areas with low voltage/high current, wide input voltage. The buck converter ratings and the half bridge converter ratings are $36\~72V$ input and 22V/5A output, $19\~24V$ input and 3.3V/30A output, respectively. Developed the buck and half Bridge series DC-DC converter ratings are of $36\~72V$ input and 3.3V/30A output. The buck converter is operated with zero voltage switching process to reduce the switching losses. The $80.1\%\~97.6\%$ of the efficiency is measured at $18.4{\mu}H$ output filter inductance of buck converter. In the half bridge converter, the $86\%\~96.4\%$ efficiency is measured at 150kHz switching frequency with PQI core. In the case of synchronized the buck and half bridge DC-DC converter, the measured efficiency is higher than that of the unsynchronized converter. In the synchronized converter, the maximum efficiency is measured up to $92.3\%$ with PQI core at 150kHz. 7A output.

Steady-State Analysis of ZVS and NON-ZVS Full-Bridge Inverters with Asymmetrical Control for Induction Heating Applications

  • Yachiangkam, Samart;Sangswang, Anawach;Naetiladdanon, Sumate;Koompai, Chayant;Chudjuarjeen, Saichol
    • Journal of Power Electronics
    • /
    • 제15권2호
    • /
    • pp.544-554
    • /
    • 2015
  • This paper presents a steady-state operation analysis of full-bridge series-resonant inverters focusing on the distorted load current due to low-quality-factor resonant circuits in induction heating and other applications. The regions of operation based on the zero-voltage switching (ZVS) and non-zero-voltage switching (NON-ZVS) operations of the asymmetrical voltage-cancellation control technique are identified. The effects of a distorted load current under a wide range of output powers are also analyzed for achieving a precise ZVS operating region. An experimental study is performed with a 1kW prototype. Simulation and experimental studies have confirmed the validity of the proposed method. An efficiency comparison between the variable frequency method and the conventional fixed-frequency method is provided.

AsTe계 유리반도체의 스위칭현상 (Switching Phenomena of AsTe Glass Semiconductor)

  • 박창엽
    • 전기의세계
    • /
    • 제21권1호
    • /
    • pp.17-21
    • /
    • 1972
  • Electrical resistivity and switching phenomena in glass semiconductor of AsTe and AsTeGa is studied. Samples sliced from ingot which is air quenched or water quenched, show high resistivity at room temperature. The resistivity of the AsTe and AsTeGa is 1*10$^{6}$ .ohm.-cm and 5*10$^{6}$ .ohm.-cm at 27.deg. C. Switching phenomena take place in thin the thick samples. Holding voltage is different with the thickness of the samples and the characteristics of switching in the thin and thick samhles are similar. When square wave pulse voltage is applied, delay time is detected to 5.mu.sec by oscilloscpoe.

  • PDF

하나의 스위치를 사용한 영전압-전류 스위칭 벅 컨버터 (Zero Voltage and Zero Current Switching Buck Converter Using a Single Swi)

  • 김기준;김태웅;이성백
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 F
    • /
    • pp.1866-1868
    • /
    • 1998
  • This paper propose zero voltage and zero current switching buck converter using a single switch. This converter is electrically equivalent to two basic buck converter in a cascade. Proposed converter is switching at high frequency and operate in high efficiency at wide load range due to resonant switching.

  • PDF

HVDC 적용을 위한 MMC 기반 Back-to-Back 컨버터의 스위칭레벨 동작분석 (Switching-Level Operation Analysis of MMC-based Back-to-Back Converter for HVDC Application)

  • 홍정원;정종규;유승환;최종윤;한병문
    • 전기학회논문지
    • /
    • 제62권9호
    • /
    • pp.1240-1248
    • /
    • 2013
  • This paper describes a switching-level operation analysis of BTB(Back-To-Back) converter for HVDC(high voltage DC) application based on MMC(modular multi-level converter). A switching-level operation analysis for BTB converter is very important to understand the converter operation in detail and check the voltage and current transients in each components. However, the development of switching-level simulation model for the actual size BTB Converter is very difficult because the MMC normally has more than 150 sub-modules for each arm. So, a switching level simulation model for the 11-level MMC-based BTB converter was developed with PSCAD/EMTDC software, which has 12 sub-modules for the positive arm and another 12 sub-modules for the negative arm. The DC-voltage balance algorithm, the circulating-current reduction algorithm, the harmonic reduction algorithm, and the redundancy operation algorithm were included in this simulation model. The developed simulation model can be utilized to analyze the MMC-based BTB converter for HVDC application in switching level and to develop the protection scheme for the MMC-based BTB converter for HVDC application.

A Novel Multi-Level Inverter Configuration for High Voltage Conversion System

  • Suh, Bum-Seok;Lee, Yo-Han;Hyun, Dong-Seok
    • Journal of Electrical Engineering and information Science
    • /
    • 제1권2호
    • /
    • pp.109-118
    • /
    • 1996
  • This paper deals with a new multi-level high voltage source inverter with GTO Thyristors. Recently, a multi-level approach seems to be the best suited for implementing high voltage conversion systems because it leads to harmonic reduction and deals with safe high power conversion systems independent of the dynamic switching characteristics of each power semiconductor device. A conventional multi-level inverter has some problems; voltage unbalance between DC-link capacitors and larger blocking voltage across the inner switching devices. To solve these problems, the novel multi-level inverter structure is proposed.

  • PDF

Single-Phase Improved Auxiliary Resonant Snubber Inverter that Reduces the Auxiliary Current and THD

  • Zhang, Hailin;Kou, Baoquan;Zhang, He;Zhang, Lu
    • Journal of Power Electronics
    • /
    • 제16권6호
    • /
    • pp.1991-2004
    • /
    • 2016
  • An LC filter is required to reduce the output current ripple in the auxiliary resonant snubber inverter (ARSI) for high-performance applications. However, if the traditional control method is used in the ARSI with LC filter, then unnecessary current flows in the auxiliary circuit. In addressing this problem, a novel load-adaptive control that fully uses the filter inductor current ripple to realize the soft-switching of the main switches is proposed. Compared with the traditional control implemented in the ARSI with LC filter, the proposed control can reduce the required auxiliary current, contributing to higher efficiency and DC-link voltage utilization. In this study, the detailed circuit operation in the light load mode (LLM) and the heavy load mode (HLM) considering the inductor current ripple is described. The characteristics of the improved ARSI are expressed mathematically. A prototype with 200 kHz switching frequency, 80 V DC voltage, and 8 A maximum output current was developed to verify the effectiveness of the improved ARSI. The proposed ARSI was found to successfully operate in the LLM and HLM, achieving zero-voltage switching (ZVS) of the main switches and zero-current switching (ZCS) of the auxiliary switches from zero load to full load. The DC-link voltage utilization of the proposed control is 0.758, which is 0.022 higher than that of the traditional control. The peak efficiency is 91.75% at 8 A output current for the proposed control, higher than 89.73% for the traditional control. Meanwhile, the carrier harmonics is reduced from -44 dB to -66 dB through the addition of the LC filter.

Power Loss Modeling of Individual IGBT and Advanced Voltage Balancing Scheme for MMC in VSC-HVDC System

  • Son, Gum Tae;Lee, Soo Hyoung;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권5호
    • /
    • pp.1471-1481
    • /
    • 2014
  • This paper presents the new power dissipation model of individual switching device in a high-level modular multilevel converter (MMC), which can be mostly used in voltage sourced converter (VSC) based high-voltage direct current (HVDC) system and flexible AC transmission system (FACTS). Also, the voltage balancing method based on sorting algorithm is newly proposed to advance the MMC functionalities by effectively adjusting switching variations of the sub-module (SM). The proposed power dissipation model does not fully calculate the average power dissipation for numerous switching devices in an arm module. Instead, it estimates the power dissipation of every switching element based on the inherent operational principle of SM in MMC. In other words, the power dissipation is computed in every single switching event by using the polynomial curve fitting model with minimum computational efforts and high accuracy, which are required to manage the large number of SMs. After estimating the value of power dissipation, the thermal condition of every switching element is considered in the case of external disturbance. Then, the arm modeling for high-level MMC and its control scheme is implemented with the electromagnetic transient simulation program. Finally, the case study for applying to the MMC based HVDC system is carried out to select the appropriate insulated-gate bipolar transistor (IGBT) module in a steady-state, as well as to estimate the proper thermal condition of every switching element in a transient state.

Turn-on Loss Reduction for High Voltage Power Stack Using Active Gate Driving Method

  • Kim, Jin-Hong;Park, Joon Sung;Gu, Bon-Gwan;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.632-642
    • /
    • 2017
  • This paper presents an improved approach towards reducing the switching loss of insulated gate bipolar transistors (IGBTs) for a medium-capacity-class power conditioning system (PCS). In order to improve the switching performance, the switching operation is analyzed, and based on this analysis, an improved switching method that reduces the switching time and switching loss is proposed. Compared to a conventional gate drive scheme, the switching loss, switching time, and delay are improved in the proposed gate driving method. The performance of the proposed gate driving method is verified through several experiments.

새로운 소프트 스위칭형 벅-부스터 컨버터의 효율개선 (Efficiency Improvement of New Soft Switching Type Buck-Boost Chopper)

  • 고강훈;곽동걸;서기영;권순걸;이현우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 연구회 합동 학술발표회 논문집
    • /
    • pp.44-48
    • /
    • 1998
  • In the buck-boost DC-DC converter which is used at a certain situation such as in factories where loads often change a lot, the switches in the device make big energy loss in operating at Buck-Boost Mode due to hard switching and are affected by lots of stresses which decrease the efficiency rate of the converter. In order to improve this problem, to decrease the loss of snubber and switching, it has been investigated that zero voltage switching mode and zero current switching mode which make the operation of switches with soft switching. For the more sophisticated and advanced device, this paper is presented the Partial Resonant Soft Switching Mode Power Converter which is adapted the power converter having the partial resonant soft switching mode, that makes switches operate when the resonant current or voltage becomes zero by making the resonant circuit partially at turning on and off of the switches with suitable layout of the resonant elements and switch elements in the converter. Also, this paper includes the analysis and simulation of the Partial Resonant type Buck-Boost Chopper.

  • PDF