• Title/Summary/Keyword: Voltage Sensitivity

Search Result 651, Processing Time 0.023 seconds

Frequency Sensitivity Analysis of Nonsinusoidal Input Voltage in Steady State (정상상태에서의 비정현적 입력전압의 주파수 민감도 해석)

  • Choi, Myung-Jun;Lee, Se-Hee;Kim, Chang-Hyun;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.124-126
    • /
    • 1997
  • A number of electromagnetic devices periodically driven by solid-state switches have been analyzed with time-stepping finite element method, which requires much time to reach a steady state. The sensitivity analysis which have been used for the shape design is employed for an efficient calculation of linear magnetodynamics with nonsinusoidal driving sources. The high-order frequency sensitivity from the harmonic finite element formulation is used along with Fourier transform and Taylor series expansion. The algorithm is validated through a numerical example of a single-phase transformer driven by a trapezoidal voltage source.

  • PDF

Characteristics on the Harmonic Sensitivity of an Induction Watthour Meter (유도형 적산전력량계의 고조파 민감도 특성)

  • Jang, Seok-Myeong;Lee, Seong-Ho;Park, Yeong-Tae
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.11
    • /
    • pp.587-596
    • /
    • 1999
  • The use of Switching elements in power systems causes the current or voltage to involve harmonic waves. Harmonics bring about registration errors of the equipment for measuring power. In case the induction watthour meter designed on sinusoidal source is used in the measurement of power with harmonics, the precise measurement of power has many problems because harmonics cause a decrease of power factor and vibration by the unstable driving force on the aluminum disc. In this paper, analysis and test results on the harmonic sensitivity of an induction watthour meter is reported when the input voltage and current with harmonics were supplied to single-phase watthour meter.

  • PDF

A High-sensitivity Passive Magnetic Transducer Based on PZT Plates and a Fe-Ni Fork Substrate

  • Li, Ping;Wen, Yumei;Jia, Chaobo;Li, Xinshen
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.271-275
    • /
    • 2011
  • This paper proposes a magnetoelectric (ME) composite transducer structure consisting of a magnetostrictive H-type Fe-Ni fork substrate and piezoelectric PZT plates. The fork composite structure has a higher ME voltage coefficient compared to other ME composite structures due to the higher quality (Q) factor. The ME sensitivity of the fork structure reaches 12 V/Oe (i.e., 150 V/cm Oe). The fork composite with two PZT plates electrically connected in series exhibits over 5 times higher ME voltage coefficient than the output of the rectangle structure in the same size. The experiment shows the composite of a Fe-Ni fork substrate and PZT plates has a significantly enhanced ME voltage coefficient and a higher ME sensitivity relative to the prior sandwiched composite laminates. By the use of a lock-in amplifier with 10 nV resolution, this transducer can detect a weak magnetic field of less than $10^{-12}$ T. This transducer can also be designed for a magnetoelectric energy harvester due to its passive high-efficiency ME energy conversion.

Economical Gas Chamber for In-situ Gas Measurement and Analysis of Gas Response Characteristics according to Sensor Voltage (인시투 가스 측정이 가능한 경제적 가스 챔버 구현 및 센서 전압에 따른 가스 응답 특성 분석)

  • Choi, Yun-Suk;Lee, In Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.5
    • /
    • pp.1-8
    • /
    • 2019
  • Breath analysis using a portable device is better than the classical breath analysis system in terms of installation and operation. There is an increasing need to develop cost-effective equipment for testing gas sensors from the viewpoint of functionalities that can be applied applicable to portable devices. In the present study, an economical gas chamber for in-situ gas measurement is implemented with a single gas chamber without using expensive gas storage and control equipment; the gas response characteristics are analyzed using the above-described chamber. The main features of the implemented gas chamber are simple injection procedure, improved gas diffusion, easy measurement and cleaning, support for low-power mode measurement function for portable devices, and open source platform. Moreover, an analysis of gas response characteristics based on changes in sensor voltage show that the sensitivity and 90% response time are affected by the sensor voltage. Furthermore, the sensitivity graph has an inflection point in a specific range. The gas sensor applied in this study showed fast response speed and high sensitivity for sensor voltages of 3.0-3.5 V, regardless of the concentration of acetone gas, the target gas used in this study.

Diagnosis of Medium Voltage Cables for Nuclear Power Plant

  • Ha, Che-Wung;Lee, Do Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1369-1374
    • /
    • 2014
  • Most accidents of medium-voltage cables installed in nuclear power plants result from the initial defect of internal insulators or the initial failure due to poor construction. However, as the service years of plants increase, the possibility of cable accidents is also rapidly increases. This is primarily caused by electric, mechanical, thermal, and radiation stresses. Recently, much attention is paid to the study of cable diagnoses. To date, partial discharge and Tan${\delta}$ measurements are known as reliable methods to diagnose the aging of medium-voltage cables. High frequency partial discharge measurement techniques have been widely used to diagnose cables in transmission and distribution systems. However, the on-line high frequency partial discharge technique has not been used in the nuclear power plants because of the plant shutdown risk, degraded measurement sensitivity, and application problems. In this paper, the partial discharge measurement with a portable device was tried to evaluate the integrity of the 4.16kV and 13.8kV cable lines. The test results show that the high detection sensitivity can be achieved by the high frequency partial discharge technique. The present technique is highly attractive to diagnose medium voltage cables in nuclear power plants.

A Study on the Sensitivity Increase of the Magnetotransistor with Combined Hall Effect and Emitter Injection Modulation Operated in the Saturation Region (홀 효과와 에미터 인젝션 모듈레이션이 결합된 자기트랜지스터의 포화영역에서의 민감도 증가 현상에 관한 연구)

  • Kang, Uk-Song;Lee, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1434-1436
    • /
    • 1995
  • We designed and fabricated a highly sensitive magnetotransistor which employes the emitter region as a Hall plate for inducing Hall voltage across the emitter. The Hall voltage modulates the emitter basic junction bias on both sides of the emitter so that a large collector current difference is resulted. The specially designed $p^+$ ring around the emitter enhances accumulation of drifted electrons in the emitter and thus the Hall voltage. A relative sensitivity of 240/tesla is measured by operating the device in the saturation mode.

  • PDF

Selection of Optimal TCSC Location to Keep the Steady-state Voltage Profile within limits (정상상태시 전압유지를 위한 TCSC의 최적 위치 선정에 관한 연구)

  • Lim, Jung-Uk;Seo, Jang-Cheol;Moon, Seung-Ill
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1063-1065
    • /
    • 1998
  • This paper discusses the selection of optimal location of Thyristor Controlled Series Compensator (TCSC) devices to maintain the steady-state voltage profile within limits. A procedure for selecting optimal TCSC location based on sensitivity analysis is developed. This approach identifies the critical lines by evaluating all the voltage magnitudes sensitivity with respect to a line reactance. Computer simulation of a example system is used to verify the proposed procedure.

  • PDF

전압안정도 개선을 위한 무효전력 제어

  • Kim, Geon-Jung;Kim, Won-Gyeom;Jeong, Tae-Ho;Lee, Sang-Jung
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.422-425
    • /
    • 1991
  • This paper presents the effect of the voltage proximity index for the voltage collpase in power systems. The reactive generation limits are considered for the determination of the voltage proximity index. This paper also shows how the VAR investment ranking order works by the sensitivity index(proximity index). Simulation has carried out with the IEEE 14 bus system and has shown the voltage proximity index working well.

  • PDF

A Development of Monitoring and Control System for Improved the Voltage Stability in the Power System (전력계통의 전압안정도향상을 위한 감시제어시스템 개발)

  • Lee, Hyun-Chul;Jeoung, Ki-Suk;Park, Ji-Ho;Baek, Young-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.437-443
    • /
    • 2013
  • This paper was developed a monitoring and control system to use reactive power control algorithm. This algorithm could be improved voltage stability in power system. This method was controlled the voltage for stability improvement, effective usage of reactive power, and the increase of the power quality. PMS(Power Management System) has been calculate voltage sensitivity, and control reactive power compensation device. The voltage control was used to the FACTS, MSC/MSR(Mechanically Switched Capacitors/Reactors), and tap of transformer in power system. The reactive power devices in power system were control by voltage sensitivity ranking of each bus. Also, to secure momentary reactive power, it had been controlled as the rest of reactive power in the each bus. In here, reactive power has been MSC/MSR. The simulation result, First control was voltage control as fast response control of FACTS. Second control was voltage control through the necessary reactive power calculation as slow response control of MSR/MSR. Third control was secured momentary reactive reserve power. This control was method by cooperative control between FACTS and MSR/MSC. Therefore, the proposed algorithm was had been secured the suitable reactive reserve power in power system.

Zinc Sulfide-selenium X-ray Detector for Digital Radiography

  • Park, Ji-Koon;Kang, Sang-Sik;Kim, Jae-Hyung;Mun, Chi-Woong;Nam, Sang-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.4
    • /
    • pp.16-20
    • /
    • 2002
  • The high bias voltage associated with the thick layer (typically 500-1000 ㎛) of selenium required to have an acceptable x-ray absorption in radiography and fluoroscopy applications may have some practical inconvenience. A hybrid x-ray detector with zinc sulfide-amorphous selenium structure has been developed to improve the x-ray sensitivity of a a-Se based flat-panel digital imaging detector. Photoluminescence(PL) characteristic of a ZnS:Ag phosphor layer showed a light emission peak centered at about 450 nm, which matches the sensitivity spectrum of selenium. The dark current of the hybrid detector showed similar characteristics with that of a a-Se detector. The x-ray sensitivity of hybrid and a-Se x-ray detector was 345 pC/㎠/mR and 295 pC/㎠/mR at an applied voltage of 10 V/㎛, respectively. The purpose of this study was to evaluate the pertinence of a solution using a thin selenium layer, as a photosensitive converter, with a thick coating of silver doped zinc sulfide phosphor.