• Title/Summary/Keyword: Voltage Division

Search Result 1,118, Processing Time 0.03 seconds

Active-Clamp AC-DC Converter with Direct Power Conversion (직접전력변환 방식을 이용한 능동 클램프 AC-DC 컨버터)

  • Cho, Yong-Won;Kwon, Bong-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.230-237
    • /
    • 2012
  • This paper proposes an active-clamp ac-dc converter with direct power conversion that has a simple structure and achieves high efficiency. The proposed converter is derived by integrating the step-down ac chopper and the output-voltage doubler. The proposed converter provides direct ac-dc conversion and dc output voltage without using any full-bridge diode rectifier. The step-down ac chopper using an active-clamp mechanism serves to clamp the voltage spike across the main switches and provides zero-voltage turn-on switching. The resonant-current path formed by the leakage inductance of the transformer and the resonant capacitor of the output-voltage doubler achieves the zero-current turn-off switching of the output diodes. The operation principle of the converter is analyzed and verified. A 500W prototype is implemented to show the performance of the proposed converter. The prototype provides maximum efficiency of 95.1% at the full load.

Identification of Internal Resistance of Microbial Fuel Cell by Electrochemical Technique and Its Effect on Voltage Change and Organic Matter Reduction Associated with Power Management System (전기화학적 기법에 의한 미생물연료전지 내부저항 특성 파악 및 전력관리시스템 연계 전압 변화와 유기물 저감에 미치는 영향)

  • Jang, Jae Kyung;Park, Hyemin;Kim, Taeyoung;Yang, Yoonseok;Yeo, Jeongjin;Kang, Sukwon;Paek, Yee;Kwon, Jin Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.5
    • /
    • pp.220-228
    • /
    • 2018
  • The internal resistance of microbial fuel cell (MFC) using stainless steel skein for oxidizing electrode was investigated and the factors affecting the voltage generation were identified. We also investigated the effect of power management system (PMS) on the usability for MFC and the removal efficiency of organic pollutants. The performance of a stack microbial fuel cell connected with (PMS) or PMS+LED was analyzed by the voltage generation and organic matter reduction. The maximum power density of the unit cells was found to be $5.82W/m^3$ at $200{\Omega}$. The maximum current density was $47.53A/m^3$ without power overshoot even under $1{\Omega}$. The ohmic resistance ($R_s$) and the charge transfer resistance ($R_{ct}$) of the oxidation electrode using stainless steel skein electrode, were $0.56{\Omega}$ and $0.02{\Omega}$, respectively. However, the sum of internal resistance for reduction electrode using graphite felts loaded Pt/C catalyst was $6.64{\Omega}$. Also, in order to understand the internal resistance, the current interruption method was used by changing the external resistance as $50{\Omega}$, $300{\Omega}$, $5k{\Omega}$. It has been shown that the ohm resistance ($R_s$) decreased with the external resistance. In the case of a series-connected microbial fuel cell, the reversal phenomenon occurred even though two cells having the similar performance. However, the output of the PMS constantly remained for 20 hours even when voltage reversal occurred. Also the removal ability of organic pollutants (SCOD) was not reduced. As a result of this study, it was found that buffering effect for a certain period of time when the voltage reversal occurred during the operation of the microbial fuel cell did not have a serious effect on the energy loss or the operation of the microbial fuel cell.

Improved Zero Voltage and Zero Current Switching Full Bridge PWM Converter with Active Clamp

  • Baek, J.W.;Cho, J.G.;Jeong, C.Y.;Yoo, D.W.;Kim, H.G.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.687-693
    • /
    • 1998
  • An improved zero voltage and zero current switching (ZVZCS) full bridge (FB) PWM converter is proposed to solve the problems of the previously presented ZVACS-FB-PWM converter with secondary active clamp such as narrow ZVS range of leading-leg switches [6]. By adding an auxiliary inductor in between the leading-leg and separated input source voltages, the ZVS of leading leg switches can be extended to the whole line and load ranges, which eliminates unwanted hard switching of clamp switch and simplifies its control. The principle of operation is explained and analyzed. The features and design considerations of the proposed converter are also illustrated and verified on a 3 kW, 100 KHz IGBT based experimental circuit.

  • PDF

Improvement of Measuring Capacity of the DC High-voltage Divider for a National High-voltage Standard (국가 고전압 표준용 직류고전압 분압기의 측정능력 향상)

  • Lee, Sang-Hwa;Jang, Seok-Myeong;Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.11
    • /
    • pp.1622-1625
    • /
    • 2014
  • The main measurement uncertainty factors in DC high-voltage dividers for a national high-voltage standard are the measurement uncertainty of low-voltage arm and the stability of a high-voltage supply. In this study, the uncertainties by the two factors are greatly improved. As a result the measurement uncertainty for the DC high-voltage divider is reduced from $16{\times}10^{-6}(k=2)$ to $8{\times}10^{-6}(k=2)$ which is at international level.

Asymmetry Effects on Optical Duobinary Transmitters

  • Lee, Dong-Soo;Huh, Hyun-Gue
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.3
    • /
    • pp.1-7
    • /
    • 2008
  • We have theoretically investigated the asymmetry effects on 10[Gb/s] optical duobinary transmitters from the viewpoint of the driving voltage ratios by computer simulations. For driving voltage ratios(=driving voltage/switching voltage) with smaller than 100[%], the transmission performance has been greatly affected by the asymmetry of the bandwidth of LPFs than that of the Mach-Zehnder Modulator driving voltage. On the other hand, for driving voltage ratios with 100[%], the transmission performance has been degraded by the asymmetry of the driving voltage and is not sensitive to that of the bandwidth of LPFs. For the transmission performance within 1[dB] power penalty under the asymmetry condition, the driving voltage ratio with 100[%] has performed better than the low driving voltage ratios.

A study on improvement of the control performance of the automatic voltage regulator of a brushless synchronous generator (브러쉬리스 동기발전기 자동전압조정기의 제어성능 향상을 위한 연구)

  • Lee, Youngchan;Kim, Jongsu;Jung, Byung-Gun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.909-915
    • /
    • 2014
  • Terminal voltage of the Automatic Voltage Regulator(AVR) of brushless synchronous generator is generally being controlled by PID Control way in shore and ship field. However, in case of changeable large load on power system, PID control method is deficiency to respond output voltage with settling time. Hence, taking into consideration this situation, it is required new control method. In this thesis, we propose Fuzzy Logic Control(FLC) which has more optimal robust control way in order to respond varying values of terminal voltage to the brushless synchronous generator through simulation of MATLAB/SIMULINK and prove Fuzzy logic control more optimal compared with PID control.

Application of Electrochemical Method for Decolorization of Biologically Treated Animal Wastewater Effluent (생물학적 축산폐수 처리수 색도제거를 위한 전기화학적 방법의 적용)

  • 윤성준;신종서;라창식
    • Journal of Animal Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.315-324
    • /
    • 2006
  • This research was conducted to clarify the characteristics of electrochemical decolorization of effluent discharged from a biological animal wastewater treatment process and to finally establish parameters or mode for optimum operation of electrolysis system. Average color unit of wastewater was about 1,200 and DSA(Dimensionally Stable Anode) was used as electrode. Experiments were performed with two different operation conditions or modes, fixed voltage-free current(Run A) and free voltage-fixed current(Run B). Color removal rate was proportional to the electrode area and electrical conductivity, and an equation subject to them at a condition of fixed voltage was derived as follows; Ct=C0ekt, k=[{0.0121×a(dm2)× c(mS/cm)}+0.0288], [where, C0: initial color, Ct: color unit after treatment for t, k: reaction coefficient, t: time(min.), a: electrode area, c: conductivity]. From the study on the effects of current density on color removal, it was revealed that the removal efficiency of color was function of the current density, showing direct proportion. However, when considered energy consumption rate, maintenance of low current density was an economical way. Based on the obtained results, it was concluded that supplementation of electrolyte is not necessary for the removal of color from the effluent of secondary treatment process and operation with the mode of free voltage-fixed current, rather than operation with fixed voltage-free current mode, would be an efficient way to increase the removal performance and capacity per consumed energy.

Application of the Band-pass Filtering for Improving 3D Tomogram of Micron-thick Sections of Biological Specimens (생물시료의 3D Tomogram 정밀도 개선을 위한 Band-pass Filtering 활용)

  • Ryu, Keun-Yong;Kim, Mi-Jeong;Choi, Ki-Joo;Je, A-Reum;Kim, Soo-Jin;Lee, Chul-hyun;Jung, Hyun-Suk;Park, Jong-Won;Kweon, Hee-Seok
    • Applied Microscopy
    • /
    • v.42 no.2
    • /
    • pp.105-109
    • /
    • 2012
  • Electron tomography (ET) of biological specimens is performed from a series of images obtained over a range of tilt angles in a transmission electron microscope. When using the high voltage electron microscope (HVEM), various noises appear in EM images acquired from thick sections by high voltage electron beam. In order to obtain an adequate result in electron tomograms that allow visualization of rather complex and mega-cellular structure such as brain tissue, it is necessary to remove the noise in each original tilt images of thick section. Using band-pass filtering of original tilt images, the filtered images are obtained and used to assemble a reconstructed tomogram. The qualified 3D tomogram from filtered images results in a considerable reduction of the noises compared to conventional tomogram. In conclusion, this study suggests that band-pass filtering is effective to improve the brightness and intensity of HVEM produced tomograms acquired from micron-thick sections of biological specimens.

Atmospheric Micro Glow Plasma-jet Device (상압 마이크로 글로우 방전 분사 소자)

  • Kim, Kang-Il;Kim, Geun-Young;Hong, Yong-Cheol;Yang, Sang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1533_1534
    • /
    • 2009
  • This paper presents an atmospheric micro glow plasma-jet device. The device consists of four components; a thin Ni anode, a porous alumina insulater, a stainless steel cathode and an aluminum case. The Ni anode is fabricated using micromachining technology. The anode has 10 holes, of which the hole diameter and the depth are $250{\mu}m$ and $60{\mu}m$, respectively. The discharge test is performed in nitrogen gas at atmospheric pressure for 20 kHz AC bias. The breakdown voltage is 3.5 kV at gas flow rate of 4 L/min and the the plasma-jet is blown out to ambient at 5.5 kV. In order to verify the characteristics of plasma, the current and the voltage of device are measured. The maximum temperature of plasma is $37^{\circ}C$. The plasma is well generated and stable at high voltage.

  • PDF

Cu-Ni-P Alloy Nano Powders Prepared by Electrical Wire Explosion (전기선폭발법에 의한 Cu-Ni-P 합금 나노 분말 제조)

  • Kim, Won-Baek;Park, Je-Shin;Suh, Chang-Youl;Lee, Jae-Chun;Kim, Jung-Hwan;Oh, Yong-Jun
    • Journal of Powder Materials
    • /
    • v.14 no.2 s.61
    • /
    • pp.108-115
    • /
    • 2007
  • Cu-Ni-P alloy nano powders were fabricated by the electrical explosion of electroless Ni plated Cu wires. The effect of applied voltage on the explosion was examined by applying pulse voltage of 6 and 28 kV, The estimated overheating factor, K, were 1.3 for 6 kV and 2.2 for 28 kV. The powders produced with pulse voltage of 6 kV were composed of Cu-rich solid solution, Ni-rich solid solution, and $Ni_3P$ phase. While, those produced with 28 kV were complete Cu-Ni-P solid solution and small amount of $Ni_3P$ phase. The initial P content of 6.5 at.% was reduced to 2-3 at.% during explosion due to its high vapour pressure.