Park, Ji-Ho;Lee, Sang-Duk;Jyung, Tae-Young;Jeong, Ki-Seok;Baek, Young-Sik;Seo, Gyu-Seok
The Transactions of The Korean Institute of Electrical Engineers
/
v.60
no.5
/
pp.921-928
/
2011
This paper presents a new method of local voltage control to achieve coordinative control among UPFC(Unified Power Flow Controller) and conventional reactive compensation equipments, such as switched-shunt and ULTC(Under-Load Tap Changing) transformer. Reactive power control has various difficult aspects to control because of difficulty of system analysis. Recently, the progress of power electronics technologies has lead to commercial availability of several FACTS(Flexible AC Transmission System) devices. The UPFC(Unified Power Flow Controller) simultaneously allows the independent control of active and reactive power flows as well as control of the voltage profile. When conventional reactive power sources and UPFC are used to control system voltage, the UPFC reacts to the voltage deviation faster than the conventional reactive power sources. Keeping reactive power reserve in an UPFC during steady-state operation is always needed to provide reactive power requirements during emergencies. Therefore, coordination control among UPFC and conventional reactive power sources is needed. This paper describe the method to keep or control the voltage of power system of local area and to manege reactive power reserve using PSS/E with Python. The result of simulation shows that the proposed method can control the local bus voltage within the given voltage limit and manege reactive power reserve.
This paper proposes a new coordinated voltage control scheme between STATCOM (Static Synchronous Compensator) and reactive power compensation devices, such as shunt elements(shunt capacitor and shunt reactor) and ULTC(Under-Load Tap Changer) transformer in a local substation. If STATCOM and reactive power compensators are cooperatively used with well designed control algorithm, the target of the voltage control can be achieved in a suddenly changed power system. Also, keeping reactive power reserve in a STATCOM during steady-state operation is always needed to provide reactive power requirements during emergencies. This paper describes the coordinative voltage control method to keep or control the voltage of power system in an allowable range of steady-state and securing method of momentary reactive power reserve using PSS/E with Python. In the proposed method of this paper, the voltage reference of STATCOM is adjusted to keep the voltage of the most sensitive bus to the change of loads and other reactive power compensators also are settled to supply the reactive power shortage in out range of STATCOM to cope with the change of loads. As the result of simulation, it is possible to keep the load bus voltage in limited range and secure the momentary reactive power reserve in spite of broad load range condition.
The Transactions of The Korean Institute of Electrical Engineers
/
v.62
no.4
/
pp.437-443
/
2013
This paper was developed a monitoring and control system to use reactive power control algorithm. This algorithm could be improved voltage stability in power system. This method was controlled the voltage for stability improvement, effective usage of reactive power, and the increase of the power quality. PMS(Power Management System) has been calculate voltage sensitivity, and control reactive power compensation device. The voltage control was used to the FACTS, MSC/MSR(Mechanically Switched Capacitors/Reactors), and tap of transformer in power system. The reactive power devices in power system were control by voltage sensitivity ranking of each bus. Also, to secure momentary reactive power, it had been controlled as the rest of reactive power in the each bus. In here, reactive power has been MSC/MSR. The simulation result, First control was voltage control as fast response control of FACTS. Second control was voltage control through the necessary reactive power calculation as slow response control of MSR/MSR. Third control was secured momentary reactive reserve power. This control was method by cooperative control between FACTS and MSR/MSC. Therefore, the proposed algorithm was had been secured the suitable reactive reserve power in power system.
Owing to mismatched feeder impedances in an islanded microgrid, the conventional droop control method typically results in errors in reactive power sharing among distributed generation (DG) units. In this study, an improved droop control strategy based on secondary voltage control is proposed to enhance the reactive power sharing accuracy in an islanded microgrid. In a DG local controller, an integral term is introduced into the voltage droop function, in which the voltage compensation signal from the secondary voltage control is utilized as the common reactive power reference for each DG unit. Therefore, accurate reactive power sharing can be realized without any power information exchange among DG units or between DG units and the central controller. Meanwhile, the voltage deviation in the microgrid common bus is removed. Communication in the proposed strategy is simple to implement because the information of the voltage compensation signal is broadcasted from the central controller to each DG unit. The reactive power sharing accuracy is also not sensitive to time-delay mismatch in the communication channels. Simulation and experimental results are provided to validate the effectiveness of the proposed method.
Seo, Sang-Soo;Choi, Yun-Hyuk;Kang, Sang-Gyun;Lee, Byong-Jun;Shin, Jeong-Hoon;Kim, Tae-Kyun
Journal of Electrical Engineering and Technology
/
v.4
no.4
/
pp.429-437
/
2009
This paper proposes a hybrid voltage controller based on a hierarchical control structure for implementation in the Jeju power system. The hybrid voltage controller utilizes the coordination of various reactive power devices such as generators, switched shunt devices and LTC to regulate the pilot voltage of an area or zone. The reactive power source can be classified into two groups based on action characteristics, namely continuous and discrete. The controller, which regulates the pilot bus voltage, reflects these characteristics in the coordination of the two types of reactive power source. However, the continuous type source like generators is a more important source than the discrete type for an emergency state such as a voltage collapse, thereby requiring a more reactive power reserve of the continuous type to be utilized in the coordination in order to regulate the pilot bus voltage. Results show that the hybrid controller, when compared to conventional methods, has a considerable improvement in performance when adopted to control the pilot bus voltage of the Jeju island system.
The Transactions of The Korean Institute of Electrical Engineers
/
v.59
no.9
/
pp.1540-1548
/
2010
KEPCO proposes enhanced voltage management system that is a coordinate voltage control system between the hierarchical voltage control system and the slow voltage control system. It has been installing in Jeju island. VMS consists of a master controller, CVC (Continuous Voltage Controller) and DVC (Discrete Voltage Controller). CVC consists of main controller, FDMU (Field Data Measurement Unit) and several RPDs (Reactive Power Dispatcher). CVC has a control scheme with AVRs of generator to maintain the voltage of a pilot bus in a power system, DVC has a control scheme with static reactive power sources, like a shunt capacitor, a shunt reactor, ULTC and so on, to maintain the reactive power reserve of a power system and a master controller is executed to recover reactive power margin of a power system through coordinated control between CVC and DVC.
The Transactions of the Korean Institute of Power Electronics
/
v.27
no.2
/
pp.92-99
/
2022
Due to space and geographical constraints, the power source may be located outside the island area, resulting in the considerable length of transmission line. In these cases, when an active power is transmitted, unexpected reactive power is generated at a point of common coupling (PCC). Unlike the power transmitted from the power generation source, the reactive power adversely affects the system. This study proposes a new algorithm that controls reactive power at PCC. Causes of reactive power errors are separated into parallel and series components, which allows the algorithm to compensate the reactive current of the inverter output and control reactive power at the PCC through calculations from the impedance, voltage, and current. The proposed algorithm has economic advantages by controlling the reactive power with the inverter of the power source itself, and can flexibly control power against voltage and output variations. Through the simulation, the algorithm was verified by implementing a power source of 3 [kVA] capacity connected to the low voltage system and of 5 [MVA] capacity connected to the extra-high voltage system. Furthermore, a power source of 3 [kVA] capacity inverter is configured and connected to a mock grid, then confirmed through experiments.
This paper presents the conceptual design of a cooperative control with Energy Management System (EMS) and Distribution Management System (DMS). This control enables insufficient reactive power reserve in a power transmission system to be supplemented by surplus reactive power in a power distribution system on the basis of the amount of the needed reactive power reserve calculated by the EMS. This can be achieved, because increased numbers of microgrids with distributed energy resources will be installed in the distribution system. Furthermore, the DMS with smart control strategy by using surplus reactive power in the distribution system of the area has been gradually installed in the system as well. Therefore, a kind of hierarchical voltage control and cooperative control scheme could be considered for the effective use of energy resources. A quantitative index to evaluate the current reactive power reserve of the transmission system is also required. In the paper, the algorithm for the whole cooperative control system, including Area-Q Indicator (AQI) as the index for the current reactive power reserve of a voltage control area, is devised and presented. Finally, the performance of the proposed system is proven by several simulation studies.
Kim, Bong-Sik;Choi, Yun-Hyuk;Seo, Sang-Soo;Lee, Byoung-Jun;Lee, Heung-Jae;Song, In-Jun
Proceedings of the KIEE Conference
/
2007.07a
/
pp.455-456
/
2007
Maintaining the voltages is important in the power systems and the voltage is closely associated with the reactive powers. Therefore, the voltages are maintained by controlling the reactive powers. However actually it is impossible to control reactive power for maintaining all bus voltages. Thus, Secondary Voltage Regulation was designed. It divides power systems into some control areas and controls pilot node with the included generators. The reactive powers of generators can control pilot bus voltage continuously and fast. Therefore we need to divide areas and select control generators for SVR with Electrical distance. Then estimation of the reactive power reserves of geneators is needed in voltage control areas to control voltages of the pilot nodes.
The Transactions of the Korean Institute of Power Electronics
/
v.25
no.2
/
pp.73-78
/
2020
In this study, a novel reactive power control scheme is proposed to supply stable reactive power to the distribution line by compensating a ripple voltage of DC link. In a single-phase system, a magnitude of second harmonic is inevitably generated in the DC link voltage, and this phenomenon is further increased when the capacity of DC link capacitor decreases. Reactive power control was performed by controlling the d-axis current in the virtual synchronous reference frame, and the voltage control for maintaining the DC link voltage was implemented through the q-axis current control. The proposed method for compensating the ripple voltage was classified into three parts, which consist of the extraction unit of DC link voltage, high pass filter (HPF), and time delay unit. HPF removes an offset component of DC link voltage extracted from integral, and a time delay unit compensates the phase leading effect due to the HPF. The compensated DC voltage is used as feedback component of voltage control loop to supply stable reactive power. The performance of the proposed algorithm was verified through simulation and experiments. At DC link capacitance of 375 uF, the magnitude of ripple voltage decreased to 8 Vpp from 74 Vpp in the voltage control loop, and the total harmonic distortion of the current was improved.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.