• Title/Summary/Keyword: Volcano-plutonic activity

Search Result 2, Processing Time 0.018 seconds

Mesozoic Igneous Rocks in the Bupyeong District (부평지역(富平地域)의 중생대(中生代) 화성암류(火成岩類))

  • Suh, Kyu-Sik;Park, Hee-In
    • Economic and Environmental Geology
    • /
    • v.19 no.3
    • /
    • pp.179-192
    • /
    • 1986
  • In the Bupyeong district, Mesozoic pyroclastic rocks, intrusive breccia, granites and felsic porphyries comprise a volcano-plutonic complex, overlying and intruding the Precambrian Gyeonggi gneiss complex. pyroclastic rocks, consisted mainly of rhyolitic welded tuffs, form a topographic circular structure about 10 kilometers in diameter. Granites and felsic porphyries which intruded the pyroclastic rocks are distributed in the inner side and also along the outer margin of the circular structure. K-Ar ages of two granite bodies(biotite), 162 and $148{\pm}7$ Ma, and that of the intrusive rhyolite (whole rock), $121{\pm}6$ Ma indicate that a series of volcano-plutonic igneous activity occurred between Jurassic and early Cretaceous age. Petrochemical characteristics suggest that the pyroclastic rocks, granites and felsic porphyries were originated from the comagmatic source. From the evidences of field occurrence, petrochemical and geochronological characteristics of igneous rocks and the geologic structures, it is believed that the igneous rocks in the Bupyeong district were formed during a Jurassic to early Cretaceous resurgent caldera evolution.

  • PDF

Petrology of the Cretaceous Igneous Rocks in the Mt. Baegyang Area, Busan (부산 백양산 지역의 백악기 화산-심성암류에 대한 암석학적 연구)

  • 김향수;고정선;윤성효
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.32-52
    • /
    • 2003
  • The Mt. Baegyang in Busan, composed of sedimentary basement rocks (Icheonri Formation), andesite (lava), andesitic pyroclastic rocks, fallout tuff and tuffaceous sedimentary rocks, rhyolitic pyroclastic rocks, intrusive rocks (granite-porphyry, felsite, and biotite-granite) of Cretaceous age in ascending order. The volcanic rocks show a section of composite volcano which comprised alternation of andesitic lava and pyroclasitc rocks, rhyolitic pyrocalstic rocks (tuff breccia, lapilli tuff, fine tuff) from the lower to the upper strata. From the major element chemical analysis, the volcanic and intrusive rocks belong to calc-alkaline rock series. The trace element composition and REE patterns of volcanic and plutonic rocks, which are characterized by a high LILE/HFSE ratio and enrichments in LREE, suggest that they are typical of continental margin arc calc-alkaline rocks produced in the subduction environment. Primary basaltic magma might have been derived from partial melting of mantle wedge in the upper mantle under destructive plate margin. Crystallization differentiation of the basaltic magma would have produced the calc-alkaline andesitic magma. And the felsic rhyolitic magma seems to have been evolved from andesitic magma with crystallization differentiation of plagioclase, pyroxene, and hornblende.