• Title/Summary/Keyword: Volatile oil components

Search Result 157, Processing Time 0.024 seconds

Volatile Flavor Components of Codonopsis lanceolata Traut. (Benth. et Hook.) (더덕뿌리중의 휘발성 향기성분)

  • Park, Joon-Yung;Kim, Young-Hoi;Kim, Kun-Soo;Kwag, Jae-Jin
    • Applied Biological Chemistry
    • /
    • v.32 no.4
    • /
    • pp.338-343
    • /
    • 1989
  • The volatile oil of the root of Codonopsis lanceolata Traut. (Benth. et Hook.) was isolated by steam distillation and extraction method and fractionated by silica gel column chromatography. The total volatile oil and each fractions were analyzed by GG, GC-MS and retention indices matching. A total of 50 components were identified in the volatile oil including 16 terpene and terpene alcohols, 13 hydrocarbons, 5 alcohols, 6 aldehyde and ketones, 6 acids, 2 esters and 2 miscellaneous components. The major components were n-hexanal (7.3% of total volatile oil), trans-2-hexenal (24.9%), n-hexanol (19.8%), cis-3-hexen-1-ol (5.6%) and trans-2-hexen-1-ol (29.4%).

  • PDF

Preperation and Flavor Characteristics of Seasoning Oil for Chinese Dish (중화요리용 향미유의 제조 및 향미특성)

  • Koo, Bon-Soon
    • Journal of the Korean Society of Food Culture
    • /
    • v.20 no.2
    • /
    • pp.214-220
    • /
    • 2005
  • Seasoning oil (SO) for Chinese dish was manufactured from the combination of Maillard reaction for methionine and xylose with autoclaving method. Volatile compounds were determined by GC, GC-MSD for this SO and 3 kinds of seasoning jajang samples which was obtained from restaurant. From this SO 61 kinds-404.92ppm volatile compounds were separated and identified. And from 3 samples of restaurant, 39 kinds-333.52ppm, 42 kinds-330.01ppm, 42 kinds-393.18ppm obtained respectively. Major volatile components of SO were diallyl disulfide, pentane, diallyl trisulfide, t,t-2,4-decadienal and zinngiberene. Those contents were 40.15ppm, 32.32ppm, 19.57ppm, 15.06ppm and 13.23ppm, respectively. Major volatile components in 3 kinds samples were pentane, propenal, hexanal, t-2-heptanal, 2,4-heptadienal, t,t-2,4-decadienal and unknown components. The volatile components of SO were very similar to 3 samples,

Comparison of Volatile Aroma Components from Saussurea lappa C.B. Clarke Root Oils

  • Chang, Kyung-Mi;Kim, Gun-Hee
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.2
    • /
    • pp.128-133
    • /
    • 2008
  • The volatile flavor components were isolated from the roots of Saussurea lappa C.B. Clarke produced in Korea and China by the hydro distillation, and were analyzed by gas chromatography-mass spectrometry (GC/MS). 63 aroma compounds representing 87.47% of the total peak area were tentatively identified, including 13 alcohols (22.56%), 26 hydrocarbons (21.78%), 4 aldehydes (21.24%), 11 ketones (18.04%), 1 oxide (0.52%), 3 esters (0.16%), 1 carboxylic acid (0.02%) and 4 miscellaneous components (3.15%). 46 volatile flavor components of imported S. lappa C.B. Clarke constituted 65.69% of the total volatile composition were tentatively characterized, consisting of 1 aldehyde (23.32%), 24 hydrocarbons (16.69%), 10 ketones (15.84%), 7 alcohols (8.92%), 1 oxide (0.83%), 2 esters (0.07%) and 1 acid (0.02%). The predominant components of both essential oils were (7Z,10Z,13Z)-7,10,13-hexadecatrienal and dehydrocostuslactone.

Characteristics of Flavor Reversion in Seasoning Oil using Sunflowerseed Meal (해바라기박을 이용한 향미유의 변향특성)

  • Koo, Bon-Soon;Seo, Mi-Sook
    • Journal of the Korean Society of Food Culture
    • /
    • v.22 no.6
    • /
    • pp.808-812
    • /
    • 2007
  • Seasoning oils(SO) were manufactured by direct fire method(DFM) and autoclaving method(AM) using sunflower seed meal. The SO manufactured by DFM is stronger than that by AM for Lovibond color and flavor strength. The flavor strength of 2 kinds SOs were lower than sesame oil as a control group. But acid value of SOs were superior than sesame oil, 0.452, 0.463 and 1.987, respectively. The level of Lovibond color for 2 kinds of sample seasoning oil was similar. Composition and contents of total volatile flavor components were determined from their essential oils of sesame oil and 2 kinds sample seasoning oils. As a result, total volatile flavor contents of sesame oil was 1,300.6 ppm, and that of seasoning oil samples were 697.8 ppm, 648.2 ppm, respectively. Major volatile flavor components of seasoning oil were 2-butanone, hexanal, methyl pyrazine etc. In contrast, major volatile flavor component of sesame oil was pyrazines, but that was not a major component of 2 kinds of sample seasoning oils.

The Effects of Stamping and Roasting Treatments on Volatile Aromatic Components in Curry Powder (미분쇄 및 배전처리가 카레분의 휘발성 향기성분의 변화에 미치는 영향)

  • Park, Wan-Kyu;Yoon, Jong-Hoon;Kim, Hyean-Wee;Choi, Chun-Un
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.276-279
    • /
    • 1991
  • Effects of stamping and roasting treatments on change of volatile aromatic components in curry powder were investigated by gas chromatography. These were conducted for improving volatile aromatic flavor and for improving aging effect. Major volatile aromatic components of curry powder were eugenol, cuminaldehyde, myristicin, anethole, eugenolacetate, cinnamaldehyde, linalool, limonene, p-cymene and ${\gamma}-terinene$. By stamping treatment, the content of low volatile components increased till 10 min, whereas that of high volatile components started to increase after 10 min. The content of low volatile components decreased with increasing roasting time.

  • PDF

Analysis of Aroma Components from Zanthoxylum

  • Chang, Kyung-Mi;Kim, Gun-Hee
    • Food Science and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.669-674
    • /
    • 2008
  • Zanthoxylum schinifolium and Zanthoxylum piperitum A.P. DC. belong to the Rutaceae family and are perennial, aromatic, and medicinal herbaceous plants. In this study, their aroma compounds were isolated by steam distillation extraction using a Clevenger-type apparatus, and then further analyzed by gas chromatography (GC) and gas chromatograph/mass spectrometry (GC/MS). The yields of the essential oils from Z. schinifolium and Z. piperitum AP. DC. were 2.5 and 2.0%(w/w), respectively, and the color of their oils was quite similar, a pale yellow. From the distilled oil of Z. schinifolium, 60 volatile compounds which make up 87.24% of the total composition were tentatively identified, with monoterpenes predominating. $\beta$-Phellandrene (22.54%), citronellal (16.48%), and geranyl acetate (11.39%) were the predominantly abundant components of Z. schinifolium. In the essential oil of Z. piperitum AP. DC., 60 volatile flavor components constituted 94.78% of the total peak area were tentatively characterized. Limonene (18.04%), geranyl acetate (15.33%), and cryptone (8.52%) were the major volatile flavor compounds of Z. piperitum A.P. DC.

Flavor Characteristics of Gondre Essential Oil Separated by the Hydrodistillation Extraction Method (Hydrodistillation Extraction 방법으로 분리한 곤드레 정유의 향기 특성)

  • Hyang-Sook Choi
    • The Korean Journal of Food And Nutrition
    • /
    • v.36 no.3
    • /
    • pp.163-171
    • /
    • 2023
  • The purpose of this study was to investigate the flavor characteristics of Gondre (Cirsium setidens Nakai) essential oil. The essential oil was isolated from the aerial parts of the plant by the hydrodistillation extraction method and analyzed by gas chromatography (GC) and GC-mass spectroscopy (MS). Seventy-eight (90.28%) volatile flavor components were identified in the essential oil from Gondre harvested in May. The major compounds were hexadecanoic acid (44.84%), phytol (15.57%), 6,10,14-trimethyl-2-pentadecanone (5.62%), and tertadecanoic acid (4.77%). Seventy (90.72%) volatile flavor components were identified in the essential oil from Gondre harvested in September. The major compounds were phytol (24.18%), 6,10,14-trimethyl-2-pentadecanone (15.59%), tetracosane (8.87%), 2-methyl eicosane (3.55%), 6,10,14-trimethyl-5,9,13-pentadecatrien-2-one (3.12%), dibuthyl phthalate (2.35%), and viridiflorol (2.33%). The flavor components of the essential oil from Gondre harvested in May and September were characterized by higher proportions of aliphatic fatty acids and terpene compounds, respectively.

Comparative Chemical Composition of Domestic and Imported Chrysanthemum indicum L. Flower Oils

  • Chang, Kyung-Mi;Kim, Gun-Hee
    • Food Science and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.1288-1292
    • /
    • 2009
  • Volatile flavor compounds were isolated from the flowers of Chrysanthemum indicum L. (gamguk) produced in Korea and China by the hydro distillation, and were analyzed by gas chromatography-mass spectrometry (GC/MS). The yield of oils from Korean and Chinese gamguk were 2.0 and 0.5%(v/w), respectively. Sixty-three volatile compounds of Korean gamguk representing 89.28% of the total peak area were tentatively identified, including 35 hydrocarbons, 12 alcohols, 6 ketones, 3 esters, 5 aldehydes, 1 oxide, and 1 miscellaneous component. Thirty-six volatile components of Chinese gamguk constituted 58.15% of the total volatile composition were tentatively characterized, consisting of 19 hydrocarbons, 7 alcohols, 2 ketones, 2 esters, 4 aldehydes, 1 oxide, and 1 miscellaneous component. The predominant components of Korean oil were ${\alpha}$-pinene, 1,8-cineol, and chrysanthenone. Whereas, camphor, ${\alpha}$-curcumene, and ${\beta}$-sesquiphellandrene were the main aroma compounds of Chinese gamguk.

Solvent Extracted Volatile Components of Mushroom Mycelia Cultivated with Citrus Juice Processing Wastes (감귤 주스 착즙박을 이용하여 재배된 버섯균사체의 용매추출에 의한 휘발성 성분)

  • Lee, Chang-Hwan;Yang, Min-Ho;Park, Seung-Rim;Kang, Young-Joo
    • Food Science and Preservation
    • /
    • v.14 no.4
    • /
    • pp.351-355
    • /
    • 2007
  • Solvent-extracted volatile components from dry powder prepared from Citrus unshiu products such as immature Citrus unshiu (PCU), mature Citrus unshiu (MCU), Citrus unshiu peel (CUP), and citrus juice processing wastes (CJPW), were examined. Also, solvent-extracted volatile components from mushroom mycelia of Pycnoporus coccineus (PC), Lentinus edodes (LE), Pleurotus eryngii (PE), Hericium coralloides (HC), Panellus serotinus (PS), and Ganoderma lucidum(GL), all cultivated using citrus pulp solid media, were assayed. Twenty-nine volatile components were identified in dry powder prepared Citrus unshiu and 18 volatile components were characterized from mushroom mycelia. Of these, ${\beta}-elemene$, germacrene-D, and ${\delta}-cadinene$, were derived from CJPW, but caryophyllene, hexadecanoic acid, decanoic acid, and tetradecanoic acid were synthesized by mushroom mycelia.

Essential Oil Composition of Umbelliferous Herbs (미나리과 허브식물의 향기성분)

  • 홍철운;김명곤;김철생;김남균
    • The Korean Journal of Food And Nutrition
    • /
    • v.14 no.1
    • /
    • pp.10-14
    • /
    • 2001
  • The volatile components of umbelliferous herbs having a characteristic spicy aroma were investigated. The essential oils of herbs were isolated by simultaneous steam distillation and extraction and the volatile components were identified by capillary GC and GC/MS. Forty-nine volatile compounds were identified from the herbs. The major compounds of chervil (Anthricus cerefolium) leaf oil were methyl chavicol, 1-allyl-2,4-dimethoxy benzene, and of coriander (Coriandrum sativum) leaf oil were ${\beta}$-sesquiphellan drene, germacrene B, nerolidol, selinene-4-ol, and of coriander seed oil were linalool, decanal, ${\gamma}$-terpinene, $\rho$-cymene.

  • PDF