• Title/Summary/Keyword: Volatile matters

Search Result 63, Processing Time 0.023 seconds

Structural Analysis of Volatile Matters and Heavy Oil Fractions from Pyrolysis Fuel Oil by the Heat Treatment Temperature (열처리 온도에 따른 열분해 연료유 내 휘발유분 및 잔류 중질유분의 구조 분석)

  • An, Donghae;Kim, Kyung Hoon;Kim, Jong Gu;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.297-302
    • /
    • 2019
  • In order to investigate structural changes of the pyrolysis fuel oil (PFO), the volatile matters and heavy oil fractions were separated from PFO by heat treatment temperature. As a result of $^1H-NMR$ analysis of volatile matters, 1~2 ring aromatic compounds contained in the petroleum residue were mostly removed at a temperature before $340^{\circ}C$. Moreover, new peaks corresponding to aliphatic hydrocarbons were detected at the chemical shift of 2.0~2.4 ppm. It is attributed that the aliphatic hydrocarbon sidechain was cracked from the aromatic compound by the cracking reaction occurred at $320^{\circ}C$. The C/H mole ratio and aromaticity increased with increasing the heat treatment temperature. Therefore, from the structural analysis results of heavy oil fractions and volatile matters from PFO, the decomposition of the aliphatic sidechain by cracking reaction and the separation of volatile matters by boiling point of components were mostly affected structure changes of the PFO.

An Experimental Study on Burning Time and Ignition Delay of Waste Tire Chips in High Temperature Environments (폐타이어 시편의 연소 특성 및 착화지연에 관한 실험적 연구)

  • 정종수;박은성;박종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1833-1839
    • /
    • 1994
  • Experiments have been carried out to investigate the burning characteristics of waste tires in high temperature environments. The burning of waste tire chips consists of four stages ; evaporation of volatile matters, ignition, burning of volatile matters, and burning of solid carbon. Burning time of waste tire chips depends on the gas temperature and the initial weight of the chip. However, the environments. In the ceramic matrix burner with a ceramic radiation shield, the burning time of the waste tire chips becomes shorter than that without the shield. This is due to the increase in heat transfer to the tire chips by radiation.

Production of Water for Injection by Membrane Process

  • Murakami, Daikichiro
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.06a
    • /
    • pp.177-189
    • /
    • 1996
  • Raverase osmosis or ultrafiltration systems have generally been regarded as hard to validate about WFI production. Though the Japanese and US Pharmacopoeias have allowed distillation and RO to be applied to WFI production process, only water stills, especially multiple effects have practically been employed for parenteral water production. On the other hand, the latest analysis has shown that even distillate contains such volatile organic matters as trihalomethanes and traces of heavy metals at a little higher concentration than supposed. The JP requires TOC to be monitored in WFI process based on RO or UF systems to control the concentration below 300ppb, but very few monographs or papers have so far been published about the concentrations of organic volatile matters in distillate. (See table 1-1) Therefore, this paper proposes a new applicable WFI systems based on the result of purified water analysis with some membranes used in the process. A well combined membrane system with other units could be expected to provide less amount of impurities in membrane-treated water than in distillate.

  • PDF

A Study on Effect of Thermal Decomposition Products of Coal on Anodic Reactions in Direct Carbon Fuel Cell (석탄 열분해 생성물이 직접탄소연료전지에서 애노드 반응에 미치는 영향에 대한 연구)

  • Rhie, Young Hoon;Eom, Seong Yong;Ahn, Seong Yool;Choi, Gyung Min;Kim, Duck Jool
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.5
    • /
    • pp.413-420
    • /
    • 2013
  • Effect of inherent volatile matters in fuels on electrochemical reactions of anode was investigated for a single direct carbon fuel cell (DCFC). Raw coals used as power source in the DCFC release light gases into the atmosphere under the operating temperature of DCFC ($700^{\circ}C$) by thermal decomposition and only char remained. These exhausted gases change the gas composition around anode and affect the electrochemical oxidation reaction of system. To investigate the effect of produced gases, comparative study was conducted between Indonesian sub-bituminous coal and its char obtained through thermal treatment, carbonizing. Maximum power density of raw coal ($52mW/cm^2$) was appeared higher than that of char ($37mW/cm^2$) because the gases produced from the raw coal during thermal decomposition gave additional positive results to electrochemical reaction of the system. The produced gases from coals were analyzed using TGA and FT-IR. The influence of volatile matters on anodic electrolyteelectrode interface was observed by the equivalent circuit induced from fitting of impedance spectroscopy data.

Effect of volatile matter and oxygen concentration on tar and soot yield depending on low calorific coal in Laminar Flow Reactor (저열량탄의 휘발분과 산소농도가 Tar와 Soot의 발생률에 미치는 영향)

  • Jeong, Tae Yong;Kim, Jin Ho;Lee, Byoung Hwa;Song, Ju Hun;Jeon, Chung-Hwan
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.209-212
    • /
    • 2012
  • This study was performed to analyze coal flames and measure tar and soot yields and structures of chars for two coals depending on the volatile content by the LFR(Laminar Flow Reactor) which can be applied to a variety of coal researches. The results show that volatile contents and oxygen concentration have significant influence on length and width of the soot cloud and it also indicate that the length and width of the cloud in condition of combustion decrease than those of pyrolysis atmosphere. Until the sampling height reach at 50 mm, the tar and soot yields of Berau (Sub-bituminous) coal contained relatively lots of volatile matters are less than those of Glencore A.P. (Bituminous) coal. On the other hand, tar and soot yields of Berau coal are higher than those of Glencore A.P. coal by reacted residual volatile matter. In addition, the images of samples obtained from the particle separation system of the sampling probe support for above results with the yields, and the pore development of char surface by devolatilization.

  • PDF

Assessment of Particulate Matters from an Exhaust Gas for Conventional and Low Temperature Diesel Combustion in a Compression Ignition Engine (압축 착화 엔진에서 기존 및 저온 디젤 연소에서 발생하는 배기가스의 입자상 물질에 관한 특성 비교)

  • Jung, Yongjin;Shin, Hyun Dong;Bae, Choongsik
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.183-186
    • /
    • 2012
  • The characteristics of particulate matters (PM) from an exhaust gas for conventional and low temperature diesel combustion (LTC) in a compression ignition engine was experimentally investigated by the elemental, thermogravimetric analysis. Morphology of PM was also studied by the transmission electron microscopy. PM for LTC shows that it contains more volatile hydrocarbons, which can be easily evaporated than conventional regime. PM for LTC is comprised of smaller primary particles.

  • PDF

A Study on the Nano-particles Emission Exhausted from Diesel Passenger Vehicle According to Using Biodiesel (바이오디젤 사용에 따른 경유승용차의 나노입자 배출특성 연구)

  • Kwon, Sang-Il;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.12 no.1
    • /
    • pp.65-70
    • /
    • 2007
  • This paper is to investigate the characteristics of exhaust emissions and nano-particle emission from diesel passenger vehicle according to using biodiesel fuel as an alternative fuel. In this work, the particulate matters (PM) of exhaust emissions in diesel engine were investigated by number of particles and mass measurement. The mass of the total PM was measured using the standard gravimetric measurement method, the total number concentrations were measured on a ECE15+EUDC driving cycle using Condensation Particle Counter (CPC). Total PM emission was reduced $2{\sim}38%$ and number concentration was reduced $1{\sim}27%$ according to increasing blended ratio of biodiesel with diesel fuel. Total PM emission was reduced more than particle number emission because volatile particles were measured in total PM but were not measured in particle number emissions.

  • PDF

Comparison of Characteristics of Suspended Matters in Streams by Dry/Rainy season and Watershed Characteristics (비강우/강우기와 유역특성에 따른 하천의 부유물질 성상별 유출 특성 비교)

  • Park, Jihyoung;Sohn, Sumin
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.6
    • /
    • pp.739-745
    • /
    • 2013
  • This paper investigated the runoff characteristics of different properties of suspended solids in streams according to the watershed characteristics and dry/rainy season. Suspended solids were divided into VSS and NVSS depending on volatilization. The main results of this study were as follows. TSS were more correlated with NVSS than VSS. Suspended solids were positively related with the proportion of urban > paddy > upland, negatively related with forest cover. VSS were positively correlated with POP and POC. VSS, measured in dry season, would partly result from autochthonous production and could be an indirect indicator of organic suspended solids.

Electricity Generation from Volatile Fatty Acids (VFAs) Using a Microbial Fuel Cell (휘발성지방산으로부터 미생물연료전지에 의한 전기 생산)

  • Oh, S.E.;Kim, S.J.;Yang, J.E.;Jung, Y.S.
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.2
    • /
    • pp.179-185
    • /
    • 2007
  • A new technology that utilizes a microbial fuel cell (MFC) has been developed to generate electricity directly from the oxidation of organic matters such as carbohydrates or complex organics in wastewater. Fermentation of these organic matters results in production of volatile fatty acids (VFAs), alcohols, $CO_2$ and $H_2$. We investigated the electricity-producing potential of the VFAs and actual food processing wastewater using a two-chambered MFC. The electrons produced by acetate degradation were proportional to acetate concentration in the medium. Acetate concentration and generated power were linearly correlated at a low range or acetate concentration (< 8 mg/L), but at above 8 mg/L of acetate the power produced was maintained at 0.1 mW. When butyrate was added to the anode acclimated to acetate, there was a lag period of 30 hr for electricity generation. However, when propionate was added to the same anode bottle, lag periods were not existed. The wastewater from baby food processing generated the maximum power density of $81{\pm}7\;mW/m^2$ of electricity and exhibited the Coulombic efficiencies of 27.1% and 40.5% based on TCOD and SCOD, respectively. Sugars in the food processing wastewater were reduced within 50 h from 230 mg/L < 30 mg/L.

Characterization of Odorant Compounds from Mechanical Aerated Pile Composting and Static Aerated Pile Composting

  • Kumari, Priyanka;Lee, Joonhee;Choi, Hong-Lim
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.4
    • /
    • pp.594-598
    • /
    • 2016
  • We studied airborne contaminants (airborne particulates and odorous compounds) emitted from compost facilities in South Korea. There are primarily two different types of composting systems operating in Korean farms, namely mechanical aerated pile composting (MAPC) and aerated static pile composting (SAPC). In this study, we analyzed various particulate matters (PM10, PM7, PM2.5, PM1, and total suspended particles), volatile organic compounds and ammonia, and correlated these airborne contaminants with microclimatic parameters, i.e., temperature and relative humidity. Most of the analyzed airborne particulates (PM7, PM2.5, and PM1) were detected in high concentration at SAPC facilities compered to MAPC; however these differences were statistically non-significant. Similarly, most of the odorants did not vary significantly between MAPC and SAPC facilities, except for dimethyl sulfide (DMS) and skatole. DMS concentrations were significantly higher in MAPC facilities, whereas skatole concentrations were significantly higher in SAPC facilities. The microclimate variables also did not vary significantly between MAPC and SAPC facilities, and did not correlate significantly with most of the airborne particles and odorous compounds, suggesting that microclimate variables did not influence their emission from compost facilities. These findings provide insight into the airborne contaminants that are emitted from compost facilities and the two different types of composting agitation systems.