• Title/Summary/Keyword: Volatile flavor compounds

Search Result 478, Processing Time 0.025 seconds

Potential Utilization of Concentrated Oyster Cooker Effluent for Seafood Flavoring Agent (수산식품 조미제 개발을 위한 굴 자숙 농축액의 이용)

  • KIM Jeong Han
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.1
    • /
    • pp.79-85
    • /
    • 2000
  • Proximate composition of concentrated oyster cooker effluent (COCE) was $70{\%}$ moisture, $8.55{\%}$ total nitrogen, and $18.6{\%}$ ash. Optimum conditions for enzymatic hydrolysis of COCE ($200 ml$) weve $pH 7.0{\~}7.5\;and 50{\~}60{\circ}C$ for 8 h reaction time with 0.128 U of Aspergillus oryzae PE protease(AOP), Hydrolysis of COCE led to an increase in free amino acids to 1.41 fold, with taurine comprising about $17.62{\%}$ of the total free amino acid. Fifty volatile flavor components were identified in COCE and 63 in enzyme treated COCE (HCOCE). Volatile flayer compounds we increased significantly in HCOCE when compared with untreated COCE. Results of this study might help to alleviate the current wastewater disposal problem caused by oyster cooker effluent.

  • PDF

Analysis of volatile compounds in fermented seasoning pastes using edible insects by SPME-GC/MS (SPME-GC/MS 이용 식용곤충 페이스트형 발효조미료의 향기성분분석)

  • Cho, Joo-Hyoung;Zhao, Huiling;Chung, Chang-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.2
    • /
    • pp.152-164
    • /
    • 2018
  • Fermented seasoning pastes were prepared by Aspergillus oryzae and Bacillus subtilis using three edible insects, Tenebrio molitor larvae (TMP), Gryllus bimaculatus (GBP), and Bombyx mori pupa (SPP), with soybean (SBP) as a negative control. Volatile compounds were extracted by the headspace solid-phase microextraction (HS-SPME) method and confirmed by gas chromatograph-mass spectrometry (GC-MS). In total, 121 volatiles from four samples were identified and sub-grouped as 11 esters, 18 alcohols, 23 aldehydes, 5 acids, 10 pyrazines, 2 pyridines, 7 aromatic hydrocarbons, 10 ketones, 19 alkanes, 9 amides, 4 furans and 3 miscellaneous. TMP, GBP, SPP and SBP had 48, 54, 36, and 55 volatile compounds, respectively. Overall, 2,6-dimethylpyrazine and trimethylpyrazine were found by a high proportion in all samples. Tetramethylpyrazine, a main flavor of doenjang, a Korean fermented seasoning soybean paste, was identified as one of the major compounds in TMP, SPP, and SBP. SBP had benzaldehyde, hexanal, n-pentanal, and aldehydes and SPP with pyrazines.

Volatile Analysis and Preference Measurement of Korean Black Raspberry Wines from Different Regions (주요 산지별 제조 복분자주의 기호도 및 휘발성분 분석)

  • Lee, Seung-Joo;Lee, Kwang-Geun
    • Food Engineering Progress
    • /
    • v.13 no.4
    • /
    • pp.302-307
    • /
    • 2009
  • In this study, four Korean black raspberry wines were developed from different regions in Korea; Gochang (G), Heongsung (H), Jeongup (J), and Sungchang (S). Their flavor profiles were determined using a combination of volatile analysis and sensory evaluation. From the volatile analysis of the developed wines, 8 acids, 17 alcohols, 12 esters, 9 terpenes, 3 aldehydes and ketones, and 4 miscellaneous compounds were identified. Preferences of appearance, aroma, full-body, and overall acceptability in the developed wines were determined using 9-point hedonic scale by 43 panelists, compared with one commercial black raspberry wine (Sunw). The sweetness, sourness, astringency levels were also evaluated using 9-point just-about-right (JAR) scale. The mean overall acceptability score of Sunw (5.58) was the highest among the tested wines, followed by G (4.81), S (4.44), H (4.41), and J (4.13) (p<0.05). Sweetness levels in the developed wines were overall lower than JAR level, while sourness and astringency levels were overall higher than JAR level.

Effects of superheated steam treatment on volatile compounds and quality characteristics of onion (과열 증기 처리에 따른 양파의 향기 성분 및 품질특성)

  • Lee, Mi-Hyun;Lee, Kyo-Youn;Kim, Ahna;Heo, Ho-Jin;Kim, Hyun-Jin;Chun, Ji-Yeon;Choi, Sung-Gil
    • Food Science and Preservation
    • /
    • v.23 no.3
    • /
    • pp.369-377
    • /
    • 2016
  • This study was conducted to investigate the effects of superheated steam (SHS) on volatile compounds and the quality characteristics of onion. Onion samples were treated by SHS at various steam temperatures ($100{\sim}300^{\circ}C$) for 1 min. Thiosulfinates and pyruvic acid were reduced by SHS treatment. The absorbance values obtained for thiosulfinates, the odor-causing compounds in onions, treated by were 0.889, 0.085, 0.049, 0.049, and 0.045, while that of the untreated control sample was 1.587. The pyruvic acid contents of onions treated by SHS were 7.57, 5.85, 1.66, 0.47, and 0.26 mg/mL, while that of the untreated control sample was 8.00 mg/mL. Volatile compounds such as, dipropyl trisufide, 1,3-propanedithiol, methyl thiirane, methyl propyl trisulfide, diallyl disulfide, 1-(methylthio)-1-propene, 1,1-thiobis-1-propene, 1,1-sulfinyl bispropane, dimethyl tetrasulfide, methyl propenyl disulfide, dimethyl trisulfide, and diallyl disulfide were reduced by SHS treatment. The results showed that antioxidant activities in the of onion samples were improved by SHS treatment. The hardness and chewiness of onions treated by SHS were significantly lower than those of the untreated control onion sample. Sensory evaluation suggested that SHS could help lower off-flavors in and enhance the palatability of onions. These results suggest that the application of SHS treatment to onions can decrease their off-flavors, change their textural attributes, and promote their sensory properties.

Characterization of Volatile Components in Eoyuk-jang (어육장의 휘발성 향기 성분 특성)

  • Yoon, Mi-Kyung;Choi, A-Reum;Cho, In-Hee;You, Min-Jung;Kim, Ji-Won;Cho, Mi-Sook;Lee, Jong-Mee;Kim, Young-Suk
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.366-371
    • /
    • 2007
  • The volatile components in Eoyuk-jang, a traditional Korean fermented food, were isolated using solvent extraction, and analyzed by gas chromatography-mass spectrometry (GC-MS). A total of 36 components, including 11 aliphatic hydrocarbons, 4 acids, 2 ketones, 5 phenols, 7 alcohols, 1 pyrazines, 4 pyrones and furanones, and 2 miscellaneous components, were found in Eoyuk-jang; among them, butanoic acid was quantitatively dominant. In addition, the aroma-active compounds were determined by gas chromatography-olfactometry (GC-O) using aroma extract dilution analysis (AEDA). A total of 20 aroma-active compounds were detected by GC-O. Butanoic acid (rancid) and methional (cooked potato-like) were the most potent aroma-active compounds with the highest FD factors $(Log_3$, FD), followed by 2-methyl-2-butanol (soysauce-like), 3-hydroxy-2-butanone (buttery), and 2-furanmethanol (burnt sugar-like).

THE TASTE COMPOUNDS FERMENTED ACETES CHINENSIS (새우젓의 정미성분에 관한 연구)

  • CHUNG Seung-Yong;LEE Eung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.9 no.2
    • /
    • pp.79-110
    • /
    • 1976
  • In Korea fermented fish and shellfish have traditionally been favored and consumed as seasonings or further processed for fish sauce. Three major items in production quantity among more than thirty kinds which are presently available in the market are fermented anchovy, oyster and small shrimp. They are usually used as a seasoning mixture of Kimchi in order to provide a distinctive flavor. Fermented small shrimp, Acetes chinensis is most widely and largely used ana occupies an important position in food industry of this country. But no study on its taste compounds has been reported. This study was attempted to establish the basic data for evaluating taste compounds of fermented small shrimp. The changes of such compounds during fermentation as free amino acids, nucleotides and their related compounds, TMAO, TMA, and betaine were analysed. In addition, change in microflora during the fermentation under the halophilic circumstance was also investigated. The samples were prepared with three different salt contents of 20, 30 and $40\%$ to obtain the proper degree of fermentation at a controlled tempeature of $20{\pm}2^{\circ}C$. The results are summarized as follows: Volatile basic nitrogen increased rapidly until 108 days of fermentation and afterwards it tended to increase slowly. Amino nitrogen also increased rapidly until 43 days of fermentation and then increased slowly. Extract nitrogen increased and marked the maximum value at 72 day fermentation and then decreased slowly. ADP, AMP and IMP tended to degrade rapidly while hypoxanthine increased remarkably at 27 day fermentation but slightly decreased at 72 day fermentation. It is presumed that the characteristic flavor of fermented small shrimp might be attributed to the relatively higher content of hypoxanthine. In the free amino acid composition of fresh small shrimp abundant amino acids were proline, arginine, alanine, glycine, lysine, glutamic acid, leucine, valine and threonine in order. Such amino acids like serine, methionine, isoleucine, phenylalanine, aspartic acid, tyrosine and histidine were poor. In small shrimp extract, proline, arginine, alanine, glycine, lysine and glutamic acid were dominant holding $18.5\%,\;14.6\%,\;10.8\%,\;8.7\%,\;8.1\%\;and\;7.7\%$ of total free amino acids respectively. The total free amino acid nitrogen in fresh small shrimp was $63.9\%$ of its extract nitrogen. The change of free amino acid composition in the extract of small shrimp during fermentation was not observed. Lysine, alanine glutamic acid, proline, glycine and leucine were abundant in both fresh sample and fermented products. The increase of total free amino acids during 72 day fermentation reached approximately more than 2 times as compared with that of fresh sample and then decreased slowly. Fermented small shrimp with $40\%$ of salt was too salty to be commercial quality as the results of organoleptic test showed. It is found that 72 day fermentation with $20\%\;and\;30\%$ of salt gave the most favorable flavor. It is convinced that the characteristic flavor of fermented small shrimp was also attributed to such amino acids as lysine, proline, alanine, glycine and serine known as sweet compounds, as glutamic acid with meaty taste, and as leucine known as bitter taste. The amount of betaine increased during fermentation and reached the maximum at 72 day fermentation and then decreased slowly TMA increased while TMAO decreased during fermentation. The amount of TMAO nitrogen in fermented small shrimp was $200mg\%$ on moisture and salt free base. Betaine and TMAO known as sweet compounds were abundant in fermented small shrimp. It is supposed that these compounds could also play a role as important taste compounds of fermented small shrimp. At the initial stage of fermentation, Achromobacter, Pseudomonas, Micrococcus denitrificans which belong to marine bacteria were isolated. After 40 day fermentation, they disappeared rapidly while Halabacterium, Pediococcus, Sarcian, Micrococcus morrhuae and the yeasts such as Saccharomyces sp. and Torulopsis sp. dominated. It is concluded that the most important taste compounds of fermented small shrimp were amino acids such as lysine, proline, alanine, glycine, serine, glutamic acid, and leucine, betaine, TMAO and hypoxanthine.

  • PDF

Quality properties of fermented mugworts and the rapid pattern analysis of their volatile flavor components via surface acoustic wave (SAW) based electronic nose sensor in the GC system (발효 인진쑥과 약쑥의 이화학적 품질특성 및 GC와 SAW센서기반 electronic nose에 의한 향기패턴의 신속분석)

  • Song, Hyo-Nam
    • Food Science and Preservation
    • /
    • v.20 no.4
    • /
    • pp.554-563
    • /
    • 2013
  • The changes in quality properties and nutritional components for two mugworts, namely, Artemisia capillaris Thumberg Artemisiae asiaticae Nakai fermented by Bacillus strains were characterized followed by rapid pattern analysis of volatile flavor compounds through the SAW-based electronic nose sensor in the GC system. After fermentation, the pH has remarkably decreased from 6.0~6.4 to 4.6~5.1 and there has been a slight change in the total soluble solids. The L (lightness) and b (yellowness) values in the Hunter's color system significantly decreased, whilst the a (redness) value increased via fermentation. The HPLC analysis demonstrated that the total amino acids increased in quantity and the essential amino acids were higher in the A. asiaticae Nakai than in the A. capillaris Thumberg, specially with high contents of glutamic and aspartic acid. After fermentation, the monounsaturated fatty acid increased in the A. asiaticae Nakai and the polyunsaturated fatty acids increased in the A. capillaris Thumberg. While the total polyphenol contents have not been affected by fermentation, the total sugar contents have dramatically decreased. Scopoletin, which is one of the most important index components in mugworts, was highly abundant in the A. capillaris Thumberg; however, it was not detected in the A. asiaticae Nakai. Small pieces of plant tissue in the surface microstructure were found in the fermented mugworts through the use of the scanning electron microscope (SEM). Volatile flavor compounds via electronic nose showed that the intensity of several peaks has increased and additional seven flavor peaks have been produced after fermentation. The VaporPrintTM images demonstrated a notable difference in flavors between the A. asiaticae Nakai and A. capillaris Thumberg, and the fermentation enabled the mugworts to produce subtle differences in flavor.

Volatile Components of Flower and Seed of Safflower (홍화꽃 및 홍화씨의 휘발성성분)

  • Choi, Sung-Hee;Im, Sung-Im;Jang, Eun-Young;Cho, Young-Su
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.196-201
    • /
    • 2004
  • Volatile components in flower and seed of safflower were identified. Volatile flavor compounds of safflower (Carthamus tinctorius L.) was extracted by simultaneous steam distillation and extraction method using Likens and Nickerson's extraction apparatus. Concentrated extract was analyzed and identified by gas chromatography and GC-mass spectrometry. Main volatile components in flower were terpene compounds, including p-cymene, limonene, ${\alpha}-phellandrene$, ${\gamma}-terpinene$, camphor, 4-terpineol, selinene, ${\beta}-caryophyllene$, torreyol, ${\beta}-eudesmol$, and 10 acids including 3-methylbutanoic acid, 2-methylbutanoic acid, and acids of $C_{2},\;C_{5}-C_{11}$. Main volatile components in seed and safflower were 20 aldehydes including hexanal (7.17%), (E)-2-heptenal (1.10%), (E,Z)-2,4-decadienal and (E,E)-2,4-decadienal.

A genome-wide association study for the fatty acid composition of breast meat in an F2 crossbred chicken population

  • Eunjin Cho;Minjun Kim;Sunghyun Cho;Hee-Jin So;Ki-Teak Lee;Jihye Cha;Daehyeok Jin;Jun Heon Lee
    • Journal of Animal Science and Technology
    • /
    • v.65 no.4
    • /
    • pp.735-747
    • /
    • 2023
  • The composition of fatty acids determines the flavor and quality of meat. Flavor compounds are generated during the cooking process by the decomposition of volatile fatty acids via lipid oxidation. A number of research on candidate genes related to fatty acid content in livestock species have been published. The majority of these studies focused on pigs and cattle; the association between fatty acid composition and meat quality in chickens has rarely been reported. Therefore, this study investigated candidate genes associated with fatty acid composition in chickens. A genome-wide association study (GWAS) was performed on 767 individuals from an F2 crossbred population of Yeonsan Ogye and White Leghorn chickens. The Illumina chicken 60K significant single-nucleotide polymorphism (SNP) genotype data and 30 fatty acids (%) in the breast meat of animals slaughtered at 10 weeks of age were analyzed. SNPs were shown to be significant in 15 traits: C10:0, C14:0, C18:0, C18:1n-7, C18:1n-9, C18:2n-6, C20:0, C20:2, C20:3n-6, C20:4n-6, C20:5n-3, C24:0, C24:1n-9, monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA). These SNPs were mostly located on chromosome 10 and around the following genes: ACSS3, BTG1, MCEE, PPARGC1A, ACSL4, ELOVL4, CYB5R4, ME1, and TRPM1. Both oleic acid and arachidonic acid contained the candidate genes: MCEE and TRPM1. These two fatty acids are antagonistic to each other and have been identified as traits that contribute to the production of volatile fatty acids. The results of this study improve our understanding of the genetic mechanisms through which fatty acids in chicken affect the meat flavor.

Volatile Flavor Compounds in Commerical Liquid Smokes

  • Park, Sung-Young;Kim, Hun;Cho, Woo-Jin;Lee, Young-Mi;Lee, Jung-Suck;Cha, Yong-Jun
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.10a
    • /
    • pp.141-142
    • /
    • 2001
  • Liquid smoke is made by concentration of smoke generated from charcoal of broad-leaved trees, or by refinement of smoke originated from incomplete combustion of wood condensate (Park et al., 1994). Generally, it is well known that phenol and its derivatives have antioxidative effect, while acids and formaldehyde have antimicrobial effect (Park et al., 1994). Meanwhile, some studies (Alonge, 1988; Dungel, 1961) reported that the high incidence of stomach cancer has been associated with the consumption of smoked fishes, and these were investigated to direct intake of fishes treated with smoke, containing polycyclic aromatic hydrocarbons(PAHs)(Moret et al., 1999). (omitted)

  • PDF