• Title/Summary/Keyword: Vivax malaria

Search Result 116, Processing Time 0.018 seconds

Characterization of Caveola-Vesicle Complexes (CVCs) Protein, PHIST/CVC-8195 in Plasmodium vivax

  • Wang, Bo;Lu, Feng;Han, Jin-Hee;Lee, Seong-Kyun;Cheng, Yang;Nyunt, Myat Htut;Ha, Kwon-Soo;Hong, Seok-Ho;Park, Won Sun;Han, Eun-Taek
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.6
    • /
    • pp.725-732
    • /
    • 2016
  • Plasmodium vivax produces numerous caveola-vesicle complex (CVC) structures beneath the membrane of infected erythrocytes. Recently, a member helical interspersed subtelomeric (PHIST) superfamily protein, $PcyPHIST/CVC-81_{95}$, was identified as CVCs-associated protein in Plasmodium cynomolgi and essential for survival of this parasite. Very little information has been documented to date about $PHIST/CVC-81_{95}$ protein in P. vivax. In this study, the recombinant $PvPHIST/CVC-81_{95}$ N and C termini were expressed, and immunoreactivity was assessed using confirmed vivax malaria patients sera by protein microarray. The subcellular localization of $PvPHIST/CVC-81_{95}$ N and C termini in blood stage parasites was also determined. The antigenicity of recombinant $PvPHIST/CVC-81_{95}$ N and C terminal proteins were analyzed by using serum samples from the Republic of Korea. The results showed that immunoreactivities to these proteins had 61% and 43% sensitivity and 96.9% and 93.8% specificity, respectively. The N terminal of $PvPHIST/CVC-81_{95}$ which contains transmembrane domain and export motif (PEXEL; RxLxE/Q/D) produced CVCs location throughout the erythrocytic-stage parasites. However, no fluorescence was detected with antibodies against C terminal fragment of $PvPHIST/CVC-81_{95}$. These results suggest that the $PvPHIST/CVC-81_{95}$ is localized on the CVCs and may be immunogenic in natural infection of P. vivax.

An Evaluation of a New Quantitative Point-of Care Diagnostic to Measure Glucose-6-phosphate Dehydrogenase Activity

  • Bahk, Young Yil;Ahn, Seong Kyu;Jeon, Heung Jin;Na, Byoung-Kuk;Lee, Sung-Keun;Shin, Ho-Joon
    • Parasites, Hosts and Diseases
    • /
    • v.60 no.4
    • /
    • pp.281-288
    • /
    • 2022
  • Malaria continues to be one of the most crucial infectious burdens in endemic areas worldwide, as well as for travelers visiting malaria transmission regions. It has been reported that 8-aminoquinolines are effective against the Plasmodium species, particularly primaquine, for anti-hypnozoite therapy in P. vivax malaria. However, primaquine causes acute hemolytic anemia in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency. Therefore, G6PD deficiency testing should precede hypnozoite elimination with 8-aminoquinoline. Several point-of-care devices have been developed to detect G6PD deficiency. The aim of the present study was to evaluate the performance of a novel, quantitative G6PD diagnostics based on a metagenomic blue fluorescent protein (mBFP). We comparatively evaluated the sensitivity and specificity of the G6PD diagnostic modality with standard methods using 120 human whole blood samples. The G6PD deficiency was spectrophotometrically confirmed. The performance of the G6PD quantitative test kit was compared with that of a licensed control medical device, the G6PD strip. The G6PD quantitative test kit had a sensitivity of 95% (95% confidence interval (CI): 89.3-100%) and a specificity of 100% (95% CI: 94.3-100%). This study shows that the novel diagnostic G6PD quantitative test kit could be a cost-effective and time-efficient, and universally mandated screening tool for G6PD deficiency.

Estimating Infection Distribution and Prevalence of Malaria in South Korea Using a Back-calculation Formula (후향연산식을 활용한 국내 삼일열 말라리아의 감염분포와 유병자수 추정)

  • Jang, Hyun-Gap;Park, Jeong-Soo;Jun, Mi-Jeong;Rhee, Jeong-Ae;Kim, Han-Me-Ury
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.6
    • /
    • pp.901-910
    • /
    • 2008
  • Incidence of Plasmodium vivax malaria in South Korea have been reemerged from mid-1990 and infected around 1600 patients annually recent years. The authors calculated the distribution of malaria infection and prevalence in South Korea using incidence (2001-2006) and incubation period distributions by a back-calculation formula and the least squares estimation method. The estimated infection has a normal distribution with a mean 207 and a standard deviation 30.7 days. In addition, the authors found the estimated daily average prevalence is 628.8 patients.

국내 기생충 질환의 현황 및 전망

  • Chae, Jong-Il
    • Journal of Korea Association of Health Promotion
    • /
    • v.1 no.1
    • /
    • pp.26-32
    • /
    • 2003
  • The current status and future prospects of parasitic infections in Korea is briefly reviewed. Soil-transmitted helminth infections including ascariasis, trichuriasis, and hookworm infections decreased remarkably. owing to the national control activities excuted by the Korea Association of Health Promotion(formerly Korea Association of parasite Eradication) using mass heath education. Important recent trends include reemergence of vivax malaria since 1993, persistence of food-borne trematode infections including clonorchiasis and intestinal trematode infections, increased detection of zoonotic parasitosis, close-up of infection with opportunistic parasites including cryptosporidiosis, toxoplasmosis, and pneumosytosis, increase of imported tropical infectious disease, appearance of new parasitic disease such as gymnophalloidiasis, and increase of accidental infections with free-living amoebae. These trends represent greatly changed overall patterns of parasitic infections in Korea.

  • PDF

Diversity of vir Genes in Plasmodium vivax from Endemic Regions in the Republic of Korea: an Initial Evaluation

  • Son, Ui-han;Dinzouna-Boutamba, Sylvatrie-Danne;Lee, Sanghyun;Yun, Hae Soo;Kim, Jung-Yeon;Joo, So-Young;Jeong, Sookwan;Rhee, Man Hee;Hong, Yeonchul;Chung, Dong-Il;Kwak, Dongmi;Goo, Youn-Kyoung
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.2
    • /
    • pp.149-158
    • /
    • 2017
  • Variant surface antigens (VSAs) encoded by pir families are considered to be the key proteins used by many Plasmodium spp. to escape the host immune system by antigenic variation. This attribute of VSAs is a critical issue in the development of a novel vaccine. In this regard, a population genetic study of vir genes from Plasmodium vivax was performed in the Republic of Korea (ROK). Eighty-five venous blood samples and 4 of the vir genes, namely vir 27, vir 21, vir 12, and vir 4, were selected for study. The number of segregating sites (S), number of haplotypes (H), haplotype diversity (Hd), DNA diversity (${\pi}$ and ${\Theta}_w$), and Tajima's D test value were conducted. Phylogenetic trees of each gene were constructed. The vir 21 (S=143, H=22, Hd=0.827) was the most genetically diverse gene, and the vir 4 (S=6, H=4, Hd=0.556) was the opposite one. Tajima's D values for vir 27 (1.08530, P>0.1), vir 12 (2.89007, P<0.01), and vir 21 (0.40782, P>0.1) were positive, and that of vir 4 (-1.32162, P>0.1) was negative. All phylogenetic trees showed 2 clades with no particular branching according to the geographical differences and cluster. This study is the first survey on the vir genes in ROK, providing information on the genetic level. The sample sequences from vir 4 showed a clear difference to the Sal-1 reference gene sequence, whereas they were very similar to those from Indian isolates.

Characterization of Pv92, a Novel Merozoite Surface Protein of Plasmodium vivax

  • Lee, Seong-Kyun;Wang, Bo;Han, Jin-Hee;Nyunt, Myat Htut;Muh, Fauzi;Chootong, Patchanee;Ha, Kwon-Soo;Park, Won Sun;Hong, Seok-Ho;Park, Jeong-Hyun;Han, Eun-Taek
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.4
    • /
    • pp.385-391
    • /
    • 2016
  • The discovery and understanding of antigenic proteins are essential for development of a vaccine against malaria. In Plasmodium falciparum, Pf92 have been characterized as a merozoite surface protein, and this protein is expressed at the late schizont stage, but no study of Pv92, the orthologue of Pf92 in P. vivax, has been reported. Thus, the protein structure of Pv92 was analyzed, and the gene sequence was aligned with that of other Plasmodium spp. using bioinformatics tools. The recombinant Pv92 protein was expressed and purified using bacterial expression system and used for immunization of mice to gain the polyclonal antibody and for evaluation of antigenicity by protein array. Also, the antibody against Pv92 was used for subcellular analysis by immunofluorescence assay. The Pv92 protein has a signal peptide and a sexual stage s48/45 domain, and the cysteine residues at the N-terminal of Pv92 were completely conserved. The N-terminal of Pv92 was successfully expressed as soluble form using a bacterial expression system. The antibody raised against Pv92 recognized the parasites and completely merged with PvMSP1-19, indicating that Pv92 was localized on the merozoite surface. Evaluation of the human humoral immune response to Pv92 indicated moderate antigenicity, with 65% sensitivity and 95% specificity by protein array. Taken together, the merozoite surface localization and antigenicity of Pv92 implicate that it might be involved in attachment and invasion of a merozoite to a new host cell or immune evasion during invasion process.