• Title/Summary/Keyword: Viterbi

Search Result 394, Processing Time 0.027 seconds

Multiple Phase Differential Detection of Trellis-coded MDPSK-OFDM (트렐리스 부호화된 MDPSK-OFDM의 다중 위상차 검파)

  • Kim, Chong-Il
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.217-221
    • /
    • 2003
  • In this paper, the Viterbi decoder containing new branch metrics of the squared Euclidean distance with multiple order phase differences is introduced in order to improve the bit error rate (BER) in the differential detection of the trellis-coded MDPSK-OFDM. The proposed Viterbi decoder is conceptually same as the multiple Phase differential detection method that uses the branch metric with multiple phase differences. Also, we describe the Viterbi algorithm in order to use this branch metrics. Our study shows that such a Viterbi decoder improves BER performance without sacrificing bandwidth and power efficiency. Also, the proposed algorithm can be used in the single carrier modulation.

  • PDF

Selective FEC using Multi-Stage Viterbi Coder (다단 Viterbi 부호기를 사용한 가변 에러정정 기법)

  • Park, Tae-Kuen;Lee, Jun-Hwa;Park, Jae-Hyun;Choi, Byung-Suk;Park, Hyun-Min
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.199-202
    • /
    • 1998
  • In this paper, to reduce BER(Bit Error Rate) in satellite ATM Networks, a new scheme for FEC(Forward Error Corection) using multi-stage Viterbi coder is proposed. In terms of structural complexity, proposed multi-stage Viterbi coder is simpler than the traditional single-stage coder based on the same BER performances. and, through simulation, proposed coder shows excellent error correction capabilities, compared with traditional FEC schemes. Also, we propose a selective FEC mechanism that adaptively changes the number of stages to satisfy the QoS(Quality of Service) requirements. This Selective scheme can be easily implemented using the PLCP(Physical Layer Convergence Protocol) frame structure.

  • PDF

An Efficient ACS Architecture for radix-4 Viterbi Decoder (Radix-4 비터비 디코더를 위한 효율적인 ACS 구조)

  • Kim Deok-Hwan;Rim Chong-Suck
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.1
    • /
    • pp.69-77
    • /
    • 2005
  • The Viterbi decoder which is used for the forward error correction(FEC) is a crucial component for successful modern communication systems. As modern communication speed rapidly high, the development of high speed communication module is important. However, since the feedback loop in ACS operation, high speed of Viterbi decoder is very difficult. In this paper, we propose an area reduced, high speed ACS Architecture of Viterbi decoder based on the radix-4 architecture. The area is reduced by rearranging the ACS operations, and the speed is improved by retiming of path metric memory. The proposed ACS architecture of Viterbi decoder is implemented in VHDL and synthesized in Xilinx ISE 6.2i. The area-time product of the proposed architecture is improved by 11% compared to that of the previous high speed radix-4 ACS architecture.

Performance Analysis of SOVA by Robust Equalization, Techniques in Nongaussian Noise Channel (비가우시안 잡음 채널에서 Robust 등화기법을 이용한 터보 부호의 SOVA 성능분석)

  • Soh, Surng-Ryurl;Lee, Chang-Bum;Kim, Yung-Kwon;Chung, Boo-Young
    • Journal of IKEEE
    • /
    • v.4 no.2 s.7
    • /
    • pp.257-265
    • /
    • 2000
  • Turbo Code decoder is an iterate decoding technology, which extracts extrinsic information from the bit to be decoded by calculating both forward and backward metrics in each decoding step, and uses the information to the next decoding step. Viterbi decoder, which is for a convolutional code, runs continuous mode, while Turbo Code decoder runs by block unit. There are algorithms used in a decoder : which are MAP(maximum a posteriori) algorithm requiring very complicated calculation and SOVA(soft output Viterbi algorithm) using Viterbi algorithm suggested by Hagenauer, and it is known that the decoding performance of MAP is better. The result of this make experimentation shows that the performance of SOVA, which has half complex algorithm compare to MAP, is almost same as the performance of MAP when the SOVA decoding performance is supplemented with Robust equalization techniques.

  • PDF

A SPEC-T Viterbi decoder implementation with reduced-comparison operation (비교 연산을 개선한 SPEC-T 비터비 복호기의 구현)

  • Bang, Seung-Hwa;Rim, Chong-Suck
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.7 s.361
    • /
    • pp.81-89
    • /
    • 2007
  • The Viterbi decoder, which employs the maximum likelihood decoding method, is a critical component in forward error correction for digital communication system. However, lowering power consumption on the Viterbi decoder is a difficult task since the number of paths calculated equals the number of distinctive states of the decoder and the Viterbi decoder utilizes trace-back method. In this paper, we propose a method which minimizes the number of operations performed on the comparator, deployed in the SPEC-T Viterbi decoder implementation. The proposed comparator was applied to the ACSU(Add-Compare-Select Unit) and MPMSU(Minimum Path Metric Search Unit) modules on the decoder. The proposed ACS scheme and MPMS scheme shows reduced power consumption by 10.7% and 11.5% each, compared to the conventional schemes. When compared to the SPEC-T schemes, the proposed ACS and MPMS schemes show 6% and 1.5% less power consumption. In both of the above experiments, the threshold value of 26 was applied.

An Adaptive Viterbi Decoder Architecture Using Reduced State Transition Paths (감소된 상태천이 경로를 이용한 적응 비터비 복호기의 구조)

  • Ko, Hyoungmin;Cho, Won-Kyung;Kim, Jinsang
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.2
    • /
    • pp.190-196
    • /
    • 2004
  • The development of a new hardware structure which can implement the viterbi algorithm efficiently is required for applications such as a software radio because the viterbi algorithm, which is an error correction code function for the second and the third generation of mobile communication, needs a lot of arithmetic operations. The length of K in the viterbi algorithm different from each standard, for examples, K=7 in case of IS-95 standard and GSM standard, and K=9 in case of WCDMA and CDMA2000. In this paper, we propose a new hardware structure of an adaptive viterbi decoder which can decode the constraint length in K=3~9 and the data rate in 1/2 ~ 1/3. Prototyping results targeted to Altera Cyclon EPIC20F400C8, shows that the proposed hardware structure needs maximum 19,276 logic elements and power dissipation of 222.6 mW.

  • PDF

High-Speed Low-Complexity Two-Bit Level Pipelined Viterbi Decoder for UWB Systems (UWB시스템을 위한 고속 저복잡도 2-비트 레벨 파이프라인 비터비 복호기 설계)

  • Goo, Yong-Je;Lee, Han-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.8
    • /
    • pp.125-136
    • /
    • 2009
  • This paper presents a high-speed low-complexity two-bit level pipelined Viterbi decoder architecture for MB-OFDM UWB systems. As the add-compare-select unit (ACSU) is the main bottleneck of the Viterbi decoder, this paper proposes a novel two-bit level pipelined MSB-first ACSU, which is based on 2-step look-ahead techniques to reduce the critical path. The proposed ACSU architecture requires approximately 12% fewer gate counts and 9% faster speed than the conventional MSB-first ACSU. The proposed Viterbi decoder was implemented with $0.18-{\mu}m$ CMOS standard cell technology and a supply voltage of 1.8V. It operates at a clock frequency of 870 MHZ and has a throughput of 1.74 Gb/s.

Joint Symbol Detection and Channel Estimation Methods for an OFDM System in Fading Channels (페이딩 채널환경에서 OFDM 시스템에 대한 심볼 검출 및 채널 추정 기법)

  • Cho, Jin-Woong;Kang, Cheol-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.3
    • /
    • pp.9-18
    • /
    • 2001
  • In this paper, we present the joint symbol detection and channel estimation for an orthogonal frequency division multiplexing (OFDM) system in fading channels. The proposed methods are based on decision-directed channel estimation (DDCE) method and their symbol detection is achieved by using Viterbi algorithm. This Viterbi decision-directed channel estimation (VDDCE) method tracks time-varying channels and detects a maximum likelihood symbol sequence. Recursive Viterbi decision-directed channel estimation (RVDDCE) method based on VDDCE method is proposed to shorten the detecting depth. In this method, channel estimate and Viterbi processing are recursively performed every interval of training symbol. Also, average chann'el estimation (ACE) technique to reduce the effect of additive white Gaussian noise (AWGN) is applied VDDCE method and RVDDCE method. These proposed methods arc demonstrated by computer simulation.

  • PDF

Viterbi Decoder-Aided Equalization and Sampling Clock Recovery for OFDM WLAN (비터비 복호기를 이용한 OFDM-WLAN의 채널등화 및 샘플링 클럭추적)

  • Kim Hyungwoo;Lim Chaehyun;Han Dongseog
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.5 s.335
    • /
    • pp.13-22
    • /
    • 2005
  • IEEE 802.11a is a standard for the high-speed wireless local area network (WLAN), supporting from 6 up to 54 Mbps in a 5 GHz band. We propose a channel equalization algerian and a sampling clock recovery algorithm by utilizing the Viterbi decoder output of the IEEE 802.11a WLAN standard. The proposed channel equalizer adaptively compensates channel variations. The proposed system uses re-encoded Viterbi decoder outputs as reference symbols for the adaptation of the channel equalizer. It also extracts sampling phase information with the Viterbi decoder outputs for fine adjustment of the sampling clock. The proposed sampling clock recovery and equalizer are more robust to noise and frequency selective fading environments than conventional systems using only four pilot samples.