• 제목/요약/키워드: Visualized Engine

검색결과 87건 처리시간 0.031초

이색법을 이용한 직분식 디젤 가시화 엔진내의 확산화염 온도 및 매연 측정에 관한 연구 (A Study on the Measurement of Temperature and Soot for Diffusion Flame in a Visualized D.I Diesel Engine Using the Two-color Method)

  • 한용택;이기형
    • 한국자동차공학회논문집
    • /
    • 제15권1호
    • /
    • pp.177-185
    • /
    • 2007
  • The temperature and soot of the visualized diesel engine's turbulent flow of flame was qualitatively measured. In combustion chamber, in order to judge the affect that the swirl has on the in-cylinder's current, was used two different heads with different values. Using the high speed camera, and the results were analyzed using the heat release rate produced by the pressure sensor. In order to measure the temperature and soot of the turbulent flames like that of the diesel flames two color methods were used temperature and the soot of the flames according to the conditions through analyzing the two wavelengths of the flames. It was possible to measure the highest temperature of the non-swirl head visualized engine which is approximately 2400K, and that swirl head engine managed up to 2100K. With respect to the visualized diesel engine soot, we got the grasp of the KL factor which bears the qualitative information of soot. This study is dedicated to suggesting the possibility of measuring not only the temperature but also soot of the diffusion flame of the diesel engine turbulent flames through such method.

광계측 기법을 이용한 직분식 디젤 가시화 엔진내의 온도 및 매연 측정에 관한 연구 (A Study on the Measurement of Temperature and Soot in a Visualized D.I Diesel Engine Using the Laser Diagnostics)

  • 한용택;이기형
    • 한국자동차공학회논문집
    • /
    • 제15권5호
    • /
    • pp.38-47
    • /
    • 2007
  • Based upon temperature calibration using the diffusion flame, the temperature and soot concentration of the turbulent flame in a visualized Diesel engine's turbulent flow of flame was qualitatively measured. Two different heads were used to judge the effect of swirl ratio within the combustion chamber. It was possible to measure the highest temperature of the non-swirl head visualized engine which is approximately 2400K, and that the swirl head engine managed up to 2100K. Also, the more the pressure of the spray increases the more the temperature increases due to the improved combustion situation with respect to the visualized diesel engine soot. This experiment also revealed that the KL factor was high where the fuel collided with the walls of the combustion chamber. Moreover the KL factor was high on parts of the chamber where the temperature dropped rapidly.

고속카메라를 이용한 디젤엔진내의 화염 가시화, 화염의 온도 및 매연 측정에 관한 연구 (A Study on the Measurement of Flame Visualization, Temperature and Soot for Diffusion Flame in a Diesel Engine Using High-Speed Camera)

  • 한용택;이기형
    • 대한기계학회논문집B
    • /
    • 제31권2호
    • /
    • pp.132-140
    • /
    • 2007
  • The temperature and soot of the visualized diesel engine's turbulent flow of the flame was measured qualitatively. In the combustion chamber, in order to judge the affect that the swirl current has on the current ratio two heads with different ratios were used. Using a high speed camera, the results were analyzed using flame visualization. In order to measure the temperature and soot of the turbulent flames like diesel flames, two color methods were used to acquire temperature and the soot of the flames according to the conditions through analyzing the two wavelengths of the flames. It was possible to measure the highest temperature of the non-swirl head visualized engine, which is approximately 2400K, and that swirl head engine managed up to 2100K. With respect to the visualized diesel engine soot, we got the grasp of the KL factor which bears the qualitative information of the soot. This study is dedicated to suggesting the possibility of measuring not only the temperature but also soot of the diffusion flame of the diesel engine turbulent flames.

가솔린 엔진의 연소실내 현상 연구 (Investigation of In-Cylinder Phenomena in a SI Engine)

  • 김기성
    • 한국분무공학회지
    • /
    • 제3권1호
    • /
    • pp.10-18
    • /
    • 1998
  • To investigate the in-cylinder phenomena in a SI engine with 3 valves and pent-roof type combustion chamber, flow fields, fuel distributions, and flame propagations were measured in a single c!'tinder visualized engine. Flow fields were visualized by PTV system during the intake and compression process. Fuel distributions were measured by PLIF at the various engine conditions including the cold and hot engine conditions and the effect of air-shrouded injector on the fuel distribution was investigated also. In addition, flame propagation patterns were characterized.

  • PDF

가솔린엔진에서의 2차원 화염 가시화 (2-Dimensional Visualization of the Flame Propagation in a Four-Valve Spark-Ignition Engine)

  • 배충식
    • 한국연소학회지
    • /
    • 제1권1호
    • /
    • pp.65-73
    • /
    • 1996
  • Flame propagation in a four-valve spark-ignition optical engine was visualized under lean-bum conditions with A/F=18 at 2000rpm. The early flame development in a four-valve pentroof-chamber single-cylinder engine was examined with imaging of the laser-induced Mie scattered light using an image-intensified CCD camera. Flame profiles along the line-of-sight were also visualized through a quartz piston window. Two-dimensional flame structures were visualized with a Proxitronic HF-1 fast motion camera system by Mie scattering from titanium dioxide particles along a planar laser sheet generated by a copper vapor laser. The flame propagation images were subsequently analysed with an image processing programme to obtain information about the flame structure under different tumble flow conditions generated by sleeved and non-sleeved intake ports. This allowed enhancement of the flame images and calculation of the enflamed area, and the displacement of its center, as a function of the tumble flow induced by the pentroof-chamber in the vicinity of spark plug. Image processing of the early flame development quantified the correlation between flame and flow characteristics near the spark plug at the time of ignition which has been known to be one of the most important factors in cyclic combustion variations in lean-burn engines. The results were also compared with direct flame images obtained from the natural flame luminosity of the lean mixture.

  • PDF

고속 단발 가시화 스파크 점화 엔진에서의 연소 특성에 대한 선회효과 연구 (Effects of Swirl on Flame Development and Late Combustion Characteristic in a High Speed Single-Shot Visualized SI Engine)

  • 김성수;김승수
    • 한국자동차공학회논문집
    • /
    • 제3권1호
    • /
    • pp.54-64
    • /
    • 1995
  • The effects of swirl on early flame development and late combustion characteristic were investigated using a high speed single-shot visualized 51 engine. LDV measurements were performed to get better understanding of the flow field in this combustion chamber. Spark plugs were located at half radius (R/2) and central location of bore. High speed schlieren photographs at 20,000 frames/sec were taken to visualize the detailed formation and development of the flame kernel with cylinder pressure measurements. This study showed that high swirl gave favorable effects on combustion-related performances in terms of the maximum cylinder pressure and flame growth rate regardless of spark position. However, at R/2 ignition the low swirl shown desirable effects at low engine speed gave worse performances as engine speed increased than without swirl. There were distinct signs of slow-down in flame growth during the period when the flame front expanded from 2.5mm in radius until it reached 5.0mm apparently due to the presence of ground electrode. There seemed to be heat transfer effect on the flame expansion speed which was evidenced in high swirl case by the slowdown of the late flame front presumably caused by relatively large heat loss from burned gas to wall compared with low- or no-swirl cases.

  • PDF

가시화를 이용한 가솔린 엔진의 실린더 벽면에서의 연료액막 거동 분석 (Investigation of the Liquid Fuel Film Behavior on the Cylinder Liner in an SI Engine)

  • 조훈;황승환;이종화;민경덕
    • 대한기계학회논문집B
    • /
    • 제27권10호
    • /
    • pp.1370-1376
    • /
    • 2003
  • The investigation of liquid fuel film on the cylinder liner is an essential to understand the engine-out hydrocarbon emissions formation in SI engines. In this research, two-dimensional visualization was carried out to investigate the liquid fuel film on the quartz liner in the optical engine. For this, the optical engine with hydraulic system was designed based on the commercial SI engine. The visualization was based on the laser-induced fluorescence with total reflection technique. Using a quartz liner and a special lens, only the liquid fuel film on the liner was visualized. With using this technique, the distribution of the fuel film on the cylinder liner was measured for different engine conditions and injection timing in the optical engine.

스파크 점화 엔진에서 초기화염 발달의 가시화 (Visualization of Initial Flame Development in an SI Engine)

  • 엄인용
    • 한국가시화정보학회지
    • /
    • 제2권2호
    • /
    • pp.45-51
    • /
    • 2004
  • Initial flame development and propagation were visualized under different fuel injection timings to relate the initial flame development to the engine stability in a port injection SI engine. Experiments were performed in an optical single cylinder engine modified from a production engine and images were captured through the quartz window mounted in the piston by an intensified CCD camera. Stratification state was controlled by varying injection timing. Under each injection condition, the flame images were captured at the pre-set crank angles. These were averaged and processed to characterize the flame. The flame stability was estimated by the weighted average of flame area, luminosity, and standard deviation of flame area. Results show that stratification state according to injection timing did not affect on the direction of flame propagation. The flame development and the initial flame stability are strongly dependent on the stratified conditions and the initial flame stability governs the engine stability and lean misfire limit.

  • PDF

전자제어식 직접분사 디젤 엔진 연소실내의 분무연소 특성에 관한 연구 (A study on the spray combustion characteristics in a cylinder of a D.I.diesel engine with the electronically controlled injector)

  • 정재우;김성중;이기형;선우명호
    • 한국자동차공학회논문집
    • /
    • 제8권2호
    • /
    • pp.50-56
    • /
    • 2000
  • It is well known that the combustion phenomenon of diesel engine is an unsteady turbulent diffusion combustion. Therefore, the combustion performance of diesel engine is related to a complex phenomenon which involves the various factors of combustion, such as a injection pressure, injection timing, injection rate, and operation conditions of engine. In this study, the spray and the flame development processes in a single cylinder D.I. diesel visualization engine which uses the electronically controlled injection system were visualized to interpret the complicated combustion phenomenon by using high speed CCD camera. In addition, the cylinder pressure and heat release rate were also obtained in order to analyze the diesel combustion characteristics under several engine conditions.

  • PDF

엔진 경사 조건이 오일 공급 시스템에 미치는 영향 (The Effect of Engine Tilting Conditions on the Oil Supply System)

  • 전문수;김숭기;박병완
    • 한국자동차공학회논문집
    • /
    • 제12권3호
    • /
    • pp.37-43
    • /
    • 2004
  • Engine lubrication system is generally affected by vehicle driving conditions; acceleration, braking deceleration, and cornering. The oil supply system such as oil pan, baffle plate, and oil pick-up pipe should be optimized to cope with severe driving conditions. The main purpose of this paper is to understand the effect of the engine tilting angle on the oil supply system using engine tilting test rig. For the purpose, the oil pressure fluctuation and oil aeration in the main gallery are measured at various engine tilting angles. In addition, the oil flow is visualized by using transparent oil pan to investigate the cause of the formation of oil aeration. The test results show there is a strong correlation between the main gallery oil pressure fluctuation and oil aeration. It is also found that the visualization technique is helpful to stabilize the oil supply system at severe driving conditions.