• 제목/요약/키워드: Visualization of sensor information

검색결과 86건 처리시간 0.027초

System Design for a Urban Energy Monitoring and Visualization Environment Using Ubiquitous Sensor Network and Social Sensor Networking (Ubiquitous Sensor Network 및 Social Sensor Networking을 이용한 도시 에너지 모니터링 가시화 시스템 설계)

  • Choe, Yoon;Jang, Myeong-Ho;Kim, Sung-Ah
    • Journal of the HCI Society of Korea
    • /
    • 제5권2호
    • /
    • pp.7-14
    • /
    • 2010
  • Urban Data collected through Sensor Network is becoming crucial to understand and analyse a city. Thus, the Ubiquitous Sensor Network builds the foundation of the u-City development. This research aims to develop an energy monitoring application with an intuitive visualization environment which integrates energy usage information on top of urban geospatial information. Such a system will be able to facilitate effective energy supply plan at the early stages of urban planning, and eventually to encourage citizens to conserve energy by giving them real time monitoring information in an easy to understand visual environment. The system provides multiple layers of energy-related information coupled with the geospatial information layer in order to accommodate multiple viewpoints. On the other hand, the system provides logical Level of Detail control based on urban spatial information hierarchy. We defined the system concept and functions, and designed the data structure and the methods of information visualization. This paper presents the visualization methods, data structure, interactions scenarios which combines spacial information, E-GIS data and the energy related sensor data. Furthermore this research tries to introduce the concept of Social Sensor Networking to enhance the monitoring quality.

  • PDF

Real-Time Visualization Techniques for Sensor Array Patterns Using PCA and Sammon Mapping Analysis (PCA와 Sammon Mapping 분석을 통한 센서 어레이 패턴들의 실시간 가시화 방법)

  • Byun, Hyung-Gi;Choi, Jang-Sik
    • Journal of Sensor Science and Technology
    • /
    • 제23권2호
    • /
    • pp.99-104
    • /
    • 2014
  • Sensor arrays based on chemical sensors produce multidimensional patterns of data that may be used discriminate between different chemicals. For the human observer, visualization of multidimensional data is difficult, since the eye and brain process visual information in two or three dimensions. To devise a simple means of data inspection from the response of sensor arrays, PCA (Principal Component Analysis) or Sammon's nonlinear mapping technique can be applied. The PCA, which is a well-known statistical method and widely used in data analysis, has disadvantages including data distortion and the axes for plotting the dimensionally reduced data have no physical meaning in terms of how different one cluster is from another. In this paper, we have investigated two techniques and proposed a combination technique of PCA and nonlinear Sammom mapping for visualization of multidimensional patterns to two dimensions using data sets from odor sensing system. We conclude the combination technique has shown more advantages comparing with the PCA and Sammon nonlinear technique individually.

A Study of Visualization Scheme of Sensing Data Based Location on Maps (지도에서 위치 기반의 센싱 데이터 가시화 방안 연구)

  • Choi, Ik-Jun;Kim, Yong-Woo;Lee, Chang-Young;Kim, Do-Hyeun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • 제8권5호
    • /
    • pp.57-63
    • /
    • 2008
  • Recently, OGC(Open Geospatial Consortium) take the lead in SWE(Sensor Web Enablement) research that collection various context information from sensor networks and show it on map by web. OGC SWE WG(Working Group) defines a standard encoding about realtime spatiotemporal appear geographical feature, sensing data and support web services. This paper proposes a visualization scheme of sensing data based location on 2D maps. We show realtime sensing data on moving node that mapping GPS data on map. First, we present an algorithm and procedure that location information change to position of maps for visualization sensing data based on 2D maps. For verifying that algorithm and scheme, we design and implement a program that collecting GPS data and sensing data, and displaying application on 2D maps. Therefore we confirm effective visualization on maps based on web which realtime image and sensing data collected from sensor network.

  • PDF

Tracing Facility for Visualization system of Distributed Java Object Application

  • Lee, Dong-Woo;R.S. Ramakrishna
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (3)
    • /
    • pp.783-785
    • /
    • 1999
  • Distributed Object Systems are very complex. So, it is difficult to see overall relationship among objects participated in the system. Moreover the performance tuning or maintenance are also important issues of it. So, it needs a way to view the system with low-cost and an efficient method. One of solutions is a visualization tool or system. In this paper, we proposed a tracing facility for Java-based distributed object system, especially RM(Remote Method Invocation). Our up-coming visualization system will use two phase hybrid post-mortem/on-the-fly technique. To support it, the fundamental tracing part must have some flexible and dynamic mechanism. The main idea of our tracing technique is the Plug-in Sensor Model(PSM). The relationship between tracing (monitoring) part and visualization part is closely related. So, we considered the appropriate factors for visualization. We developed 'Traced RMI(TRMI)'. For more precise visualization of a working system, the casuality of events has to be preserved. TRMI can support global event ordering.

  • PDF

Web based Fault Tolerance 3D Visualization of IoT Sensor Information (웹 기반 IoT 센서 수집 정보의 결함 허용 3D 시각화)

  • Min, Kyoung-Ju;Jin, Byeong-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제26권1호
    • /
    • pp.146-152
    • /
    • 2022
  • Information collected from temperature, humidity, inclination, and pressure sensors using Raspberry Pi or Arduino is used in automatic constant temperature and constant humidity systems. In addition, by using it in the agricultural and livestock industry to remotely control the system with only a smartphone, workers in the agricultural and livestock industry can use it conveniently. In general, temperature and humidity are expressed in a line graph, etc., and the change is monitored in real time. The technology to visually express the temperature has recently been used intuitively by using an infrared device to test the fever of Corona 19. In this paper, the information collected from the Raspberry Pi and the DHT11 sensor is used to predict the temperature change in space through intuitive visualization and to make a immediate response. To this end, an algorithm was created to effectively visualize temperature and humidity, and data representation is possible even if some sensors are defective.

The Implementation of Visualization Tool for Snowboard Using Kinect Sensor Data (키넥트 센서 데이터를 이용한 스노보드 동작 시각화 도구의 구현)

  • Park, Young-Nam;Seo, Se-Mi;Park, Myeong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • 제18권5호
    • /
    • pp.53-60
    • /
    • 2013
  • This paper proposed visualization tool for motion of snowboarding using Skeleton data obtained by the Microsoft's Kinect sensor. The BBP(Balanced Body Position) posture is a most basic motion in the Snowboarding. This posture is the primary technology for stable turns. The implementation of visualization tool to analyse the BBP posture of snowboard. comparative analysis with standard postures to the ankles, knees, hips and spine angle of joints and body tracking using coordinate information obtained by the Kinect Sensor. Analysis of the final results of the screen through the OpenGL library. This research result could be used to analysis for turn postures of snowboarding.

An App Visualization design based on IoT Self-diagnosis Micro Control Unit for car accident prevention

  • Jeong, YiNa;Jeong, EunHee;Lee, ByungKwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권2호
    • /
    • pp.1005-1018
    • /
    • 2017
  • This paper proposes an App Visualization (AppV) based on IoT Self-diagnosis Micro Control Unit (ISMCU) for accident prevention. It collects a current status of a vehicle through a sensor, visualizes it on a smart phone and prevents vehicles from accident. The AppV consists of 5 components. First, a Sensor Layer (SL) judges noxious gas from a current vehicle and a driver's driving habit by collecting data from various sensors such as an Accelerator Position Sensor, an O2 sensor, an Oil Pressure Sensor, etc. and computing the concentration of the CO collected by a semiconductor gas sensor. Second, a Wireless Sensor Communication Layer (WSCL) supports Zigbee, Wi-Fi, and Bluetooth protocol so that it may transfer the sensor data collected in the SL to ISMCU and the data in the ISMCU to a Mobile. Third, an ISMCU integrates the transferred sensor information and transfers the integrated result to a Mobile. Fourth, a Mobile App Block Programming Tool (MABPT) is an independent App generation tool that changes to visual data just the vehicle information which drivers want from a smart phone. Fifth, an Embedded Module (EM) records the data collected through a Smart Phone real time in a Cloud Server. Therefore, because the AppV checks a vehicle' fault and bad driving habits that are not known from sensors and performs self-diagnosis through a mobile, it can reduce time and cost spending on accidents caused by a vehicle's fault and noxious gas emitted to the outside.

Implementation of Flight Simulator using 6DOF Motion Platform

  • Park, Myeong-Chul;Choi, Duk-Kyu
    • Journal of the Korea Society of Computer and Information
    • /
    • 제23권8호
    • /
    • pp.17-23
    • /
    • 2018
  • In this paper, we implemented a flight posture simulator that intuitively understands aircraft flight posture and visualizes the principle of motion. The proposed system operates the 6 - axis motion platform according to the change of the navigation information and transmits the flight attitude to the simulator using the gyro sensor. A gyro sensor and an acceleration sensor are used together to analyze the attitude of the aircraft. The reason is that the gyro sensor has a cumulative error in the integration process. And the accelerometer sensor was compensated by using the complementary filter because noise was serious due to short term vibration. Using the compensated sensor information, the motion platform is operated by calculating the angle to be transmitted to the 6-axis motor. And visualization result is implemented using OpenGL. The results of this study can be used as teaching materials for students related to aviation in the future.

WIVA : WSN Monitoring Framework based on 3D Visualization and Augmented Reality in Mobile Devices (모바일 기기의 3차원 시각화와 증강현실에 기반한 센서네트워크 모니터링 프레임워크)

  • Koo, Bon-Hyun;Choi, Hyo-Hyun;Shon, Tae-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • 제46권2호
    • /
    • pp.106-113
    • /
    • 2009
  • Recently, due to many industrial accidents at construction sites, a variety of researches for structural health monitoring (SHM) of buildings are progressing. For real site application of SHM, one of the advanced technologies has blown as wireless sensor networks (WSN). In this paper, we proposed WIVA(WSN Monitoring framework based on 3D Visualization and Augmented Reality in Mobile Devices) system that applies 3D visualization and AR technology to mobile devices with camera based on WSN in order to expand the extent of information can observe. Moreover, we performed experiments to validate effectiveness in 3D and AR mode that utilize WSN data based on IEEE 802.15.4. In real implementation scenario, we demonstrated a fire occurrence test in 3-story building miniature.

Implementation of Smart Control System based on Intelligent Dimming with LEDs

  • Lee, Geum-Boon
    • Journal of the Korea Society of Computer and Information
    • /
    • 제21권5호
    • /
    • pp.127-133
    • /
    • 2016
  • In this paper, an intelligent dimming control system is designed and implemented with the human visual response function using CDS sensor, PIR sensor and temperature sensor, etc. The proposed system is designed to detect a moving object by PIR sensor and to control the LED dimming considering the human visual response. Also, the dimming of LED light can modulate on the app, and simultaneously control dimming in real-world environments with smart phone app. A high-temperature warning or a fire hazard information is transmitted to user's smart phone according to sensor values and Data graph are provided as part of data visualization. Connecting the hardware controller, the proposed intelligent smart dimming control system is expected to contribute to the power reduction interior LED, smart grid building and saving home combining with internet of things.