• Title/Summary/Keyword: Visual sensor

Search Result 459, Processing Time 0.026 seconds

Visual and Quantitative Analysis of Different Tastes in liquids with Fuzzy C-means and Principal Component Analysis Using Electronic Tongue System

  • Kim, Joeng-Do;Kim, Dong-Jin;Byun, Hyung-Gi;Ham, Yu-Kyung;Jung, Woo-Suk;Choo, Dae-Won
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.133-137
    • /
    • 2005
  • In this paper, we investigate visual and quantitative analysis of different tastes in the liquids using multi-array chemical sensor (MACS) based on the ion-selective electrodes (ISEs), which is so called the electronic tongue (E-Tongue) system. We apply the Fuzzy C-means (FCM) algorithm combined with Principal Component Analysis (PCA), which can be used to reduce multi-dimensional data to two- or three-dimensional data, to classify visually data patterns detected by E-Tongue system. The proposed technique can be determined the cluster centers and membership grade of patterns through the unsupervised way. The membership grade of an unknown pattern, which does not shown previously, can be visually and analytically determined. Throughout the experimental trails, the E-tongue system combined with the proposed algorithms is demonstrated robust performance for visual and quantitative analysis for different tastes in the liquids.

  • PDF

Visual Sensing of the Light Spot of a Laser Pointer for Robotic Applications

  • Park, Sung-Ho;Kim, Dong Uk;Do, Yongtae
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.216-220
    • /
    • 2018
  • In this paper, we present visual sensing techniques that can be used to teach a robot using a laser pointer. The light spot of an off-the-shelf laser pointer is detected and its movement is tracked on consecutive images of a camera. The three-dimensional position of the spot is calculated using stereo cameras. The light spot on the image is detected based on its color, brightness, and shape. The detection results in a binary image, and morphological processing steps are performed on the image to refine the detection. The movement of the laser spot is measured using two methods. The first is a simple method of specifying the region of interest (ROI) centered at the current location of the light spot and finding the spot within the ROI on the next image. It is assumed that the movement of the spot is not large on two consecutive images. The second method is using a Kalman filter, which has been widely employed in trajectory estimation problems. In our simulation study of various cases, Kalman filtering shows better results mostly. However, there is a problem of fitting the system model of the filter to the pattern of the spot movement.

Performance Evaluation of a Compressed-State Constraint Kalman Filter for a Visual/Inertial/GNSS Navigation System

  • Yu Dam Lee;Taek Geun Lee;Hyung Keun Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.2
    • /
    • pp.129-140
    • /
    • 2023
  • Autonomous driving systems are likely to be operated in various complex environments. However, the well-known integrated Global Navigation Satellite System (GNSS)/Inertial Navigation System (INS), which is currently the major source for absolute position information, still has difficulties in accurate positioning in harsh signal environments such as urban canyons. To overcome these difficulties, integrated Visual/Inertial/GNSS (VIG) navigation systems have been extensively studied in various areas. Recently, a Compressed-State Constraint Kalman Filter (CSCKF)-based VIG navigation system (CSCKF-VIG) using a monocular camera, an Inertial Measurement Unit (IMU), and GNSS receivers has been studied with the aim of providing robust and accurate position information in urban areas. For this new filter-based navigation system, on the basis of time-propagation measurement fusion theory, unnecessary camera states are not required in the system state. This paper presents a performance evaluation of the CSCKF-VIG system compared to other conventional navigation systems. First, the CSCKF-VIG is introduced in detail compared to the well-known Multi-State Constraint Kalman Filter (MSCKF). The CSCKF-VIG system is then evaluated by a field experiment in different GNSS availability situations. The results show that accuracy is improved in the GNSS-degraded environment compared to that of the conventional systems.

A Design of Fire Monitoring System Based On Unmaned Helicopter and Sensor Network (무인헬기 및 센서네트워크 기반 화재 감시 시스템 설계)

  • Yun, Dong-Yol;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.173-178
    • /
    • 2007
  • Recently, fires happen to occur owing to various factors. However, the demage caused by the fire is eyer increasing because timely actions could not be taken. To reduce the demage, a development of fire detection system which makes it possible to take adequate actions is requited. In this work, a sensor network-based fire detection system which utilizes both sensor nodes equipped with smoke sensor and unmaned helicopter is proposed. The proposed system is composed of unmaned helicopter which can gather the measurement data from the deployed sensor nodes and the embedded system which can get visual information on the firing spot and transmit these images to a remote server computer. The proposed system is applied to actual test bed to verify its feasibility.

SPACIAL POEM: A New Type of Experimental Visual Interaction in 3D Virtual Environment

  • Choi, Jin-Young
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02b
    • /
    • pp.405-410
    • /
    • 2008
  • There is always a rhythm in our language and speech. As soon as we speech out, even just simple words and voice we make are edited as various emotions and information. Through this process we succeed or fail in our communication, and it becomes a fun communication or a monotonous delivery. Even with the same music, impression of the play can be different according to each musician' s emotion and their understanding. We 'play' our language in the same way as that. However, I think, people are used to the variety, which is, in fact, the variation of a set format covered with hollow variety. People might have been living loosing or limiting their own creative way to express themselves by that hollow variety. SPACIAL POEM started from this point. This is a new type of 'real-time visual interaction' expressing our own creative narrative as real-time visual by playing a musical instrument which is an emotional human behavior. Producing many kinds of sound by playing musical instruments is the same behavior with which we express our emotions through. There are sensors on each hole on the surface of the musical instrument. When you play it, sensors recognize that you have covered the holes. All sensors are connected to a keyboard, which means your playing behavior becomes a typing action on the keyboard. And I programmed the visual of your words to spread out in a virtual 3D space when you play the musical instrument. The behavior when you blow the instrument, to make sounds, changes into the energy that makes you walk ahead continuously in a virtual space. I used a microphone sensor for this. After all by playing musical instrument, we get back the emotion we forgot so far, and my voice is expressed with my own visual language in virtual space.

  • PDF

Development of Wearable Sensing and Feedback Product Design for Movement Monitoring (동작 모니터링을 위한 웨어러블 센싱 및 피드백 제품 디자인 개발)

  • Cho, Hyun-Seung;Yang, Jin-Hee;Lee, Kang-Hwi;Lee, Jeong-Hwan;Park, Su-Youn;Choi, Hyeong-Ik;Jeon, Hak-Su;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.21 no.3
    • /
    • pp.165-176
    • /
    • 2018
  • The objective of this study was to develop clothing-type wearable motion sensing and feedback systems to enhance children's sports by promoting visual and audio feedback. In this study, several applications, such as fabric sensors, sportswear integrated with various types of fabric sensors, and fabric-based motion sensing module design, as well as a visual and audio feedback system for gaining a better understanding of a child's interest in a type of exercise, were developed. An SWCNT-based stretchable fabric sensor was developed for motion sensing, and sportswear was designed using the fabric sensor that was integrated into the limbs of the garment. The sensing module was developed, and sensory performance was evaluated through a joint motion experiment for children. In addition, using the feedback system that was developed in the form of an accessory, the responses of light and sound were also examined based on the movement of the child who was wearing the sportswear prototypes. This study focused on the development and assessment of prototype designs for children's sportswear and accessory products that can help to ascertain a child's interest in a particular exercise.

Implementation of Smart Gloves for the Blind and Visually Impaired

  • Park, Myeong-Chul;Kim, Tae-Sun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.8
    • /
    • pp.101-106
    • /
    • 2018
  • Most people with visual impairments can not use both hands freely because they carry a cane. And unnecessary contact with people around you during walking can occur. Other guides include guide dogs, but the price and maintenance cost are expensive and difficult to manage. In this paper, we propose a smart glove, which prevents unnecessary contact when blind people use the cane, detects the obstacle ahead by using the ultrasonic sensor, and informs the presence of the obstacle by using the servo motor. In addition, the electrostatic proximity touch module on the fingers executes a specific application of the smart phone connected by Bluetooth when the finger touches each other. It is designed to allow you to use text or phone calls when you are lost or in an emergency. The results of this study will be used as a tool to provide a more convenient life for the visually impaired.

Target Tracking System for an Intelligent Wheelchair Using Infrared Range-finder and CCD Camera (적외선 레인지파인더와 CCD 카메라를 이용한 지능 휠체어용 표적 추적 시스템)

  • Ha Yun-Su;Han Dong-Hee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.560-570
    • /
    • 2005
  • In this paper, we discuss the tracking system for a wheelchair which can follow the path of a human target such as a nurse in hospital. The problem of human tracking is that it requires recognition of feature as well as the tracking of human positions. For this purpose the use of a high cost visual sensor such as laser finder or streo camera makes the tracking a high cost additional expense. This paper proposes the tracking system uses a low cost infrared range-finder and CCD camera, The Infrared range-finder and CCD camera can create a target candidate through each target recognition algorithm. and this information is fused in order to reduce the uncertainties of a target decision and correct the positional error of the human. The effectiveness of the proposed system is verified through experiments.

Implementation of a Stereo Vision Using Saliency Map Method

  • Choi, Hyeung-Sik;Kim, Hwan-Sung;Shin, Hee-Young;Lee, Min-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.674-682
    • /
    • 2012
  • A new intelligent stereo vision sensor system was studied for the motion and depth control of unmanned vehicles. A new bottom-up saliency map model for the human-like active stereo vision system based on biological visual process was developed to select a target object. If the left and right cameras successfully find the same target object, the implemented active vision system with two cameras focuses on a landmark and can detect the depth and the direction information. By using this information, the unmanned vehicle can approach to the target autonomously. A number of tests for the proposed bottom-up saliency map were performed, and their results were presented.

Intruder Tracking and Collision Avoidance Algorithm Design for Unmanned Aerial Vehicles using a Model-based Design Method (모델 기반 설계 기법을 이용한 무인항공기의 침입기 추적 및 충돌회피 알고리즘 설계)

  • Choi, Hyunjin;Yoo, Chang-Sun;Ryu, Hyeok;Kim, Sungwook;Ahn, Seokmin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.4
    • /
    • pp.83-90
    • /
    • 2017
  • Unmanned Aerial Vehicles(UAVs) require collision avoidance capabilities equivalent to the capabilities of manned aircraft to enter the airspace of manned aircraft. In the case of Visual Flight Rules of manned aircraft, collision avoidance is performed by 'See-and-Avoid' of pilots. To obtain those capabilities of UAVs named as 'Sense-and-Avoid', sensor-system-based intruder tracking and collision avoidance methods are required. In this study, a multi-sensor-based tracking, data fusion, and collision avoidance algorithm is designed by using a model-based design tool MATLAB/SIMULINK, and validations of the designed model and code using numerical simulations and processor-in-the-loop simulations are performed.