• Title/Summary/Keyword: Visual performance improve

Search Result 267, Processing Time 0.025 seconds

Adaptive V1-MT model for motion perception

  • Li, Shuai;Fan, Xiaoguang;Xu, Yuelei;Huang, Jinke
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.371-384
    • /
    • 2019
  • Motion perception has been tremendously improved in neuroscience and computer vision. The baseline motion perception model is mediated by the dorsal visual pathway involving the cortex areas the primary visual cortex (V1) and the middle temporal (V5 or MT) visual area. However, few works have been done on the extension of neural models to improve the efficacy and robustness of motion perception of real sequences. To overcome shortcomings in situations, such as varying illumination and large displacement, an adaptive V1-MT motion perception (Ad-V1MTMP) algorithm enriched to deal with real sequences is proposed and analyzed. First, the total variation semi-norm model based on Gabor functions (TV-Gabor) for structure-texture decomposition is performed to manage the illumination and color changes. And then, we study the impact of image local context, which is processed in extra-striate visual areas II (V2), on spatial motion integration by MT neurons, and propose a V1-V2 method to extract the image contrast information at a given location. Furthermore, we take feedback inputs from V2 into account during the polling stage. To use the algorithm on natural scenes, finally, multi-scale approach has been used to handle the frequency range, and adaptive pyramidal decomposition and decomposed spatio-temporal filters have been used to diminish computational cost. Theoretical analysis and experimental results suggest the new Ad-V1MTMP algorithm which mimics human primary motion pathway has universal, effective and robust performance.

Difference in the Static Postural Control according to the Subjective Visual Vertical Deviation and Head Orientations

  • Sang Soo Lee;Sang Seok Yeo
    • The Journal of Korean Physical Therapy
    • /
    • v.35 no.5
    • /
    • pp.156-161
    • /
    • 2023
  • Purpose: This study examined the effects of subjective visual vertical perception and head orientation on static balance control. Methods: The subjects were 25 young and healthy adults. The vertical perception was measured using a subjective visual vertical (SVV), and the Center of pressure (COP) parameter was analyzed by continuously measuring the movement of the COP to determine the changes in static postural control. The group was divided based on a deviation of 3° in SVV (11 of SVV≥3°, 14 of SVV<3°) and measured with different head orientations: front, up, down, left, and right in the upright and tandem positions, respectively. Results: In the upright position, the SVV≥3° group had significantly larger values for all COP parameters (Sway length, Surface, Delta X, Delta Y, and Average speed) compared to the SVV<3° group (p<0.05). In the tandem stance, only the Ellipse Surface value was significantly larger among the COP parameters in the group with SVV≥3° compared to the group with SVV<3°(p<0.05). In contrast, the other COP parameters were not significantly different (p>0.05). The effects of static balance control on the head orientation were not statistically significant (p>0.05), and the interactions between the subjective vertical perception and head orientation were not significant (p>0.05). Conclusion: These results suggest that pathological deviations in SVV are associated with impaired static balance performance. This study can provide a therapeutic rationale for using visuospatial cognitive feedback training to improve the static balance.

VILODE : A Real-Time Visual Loop Closure Detector Using Key Frames and Bag of Words (VILODE : 키 프레임 영상과 시각 단어들을 이용한 실시간 시각 루프 결합 탐지기)

  • Kim, Hyesuk;Kim, Incheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.5
    • /
    • pp.225-230
    • /
    • 2015
  • In this paper, we propose an effective real-time visual loop closure detector, VILODE, which makes use of key frames and bag of visual words (BoW) based on SURF feature points. In order to determine whether the camera has re-visited one of the previously visited places, a loop closure detector has to compare an incoming new image with all previous images collected at every visited place. As the camera passes through new places or locations, the amount of images to be compared continues growing. For this reason, it is difficult for a visual loop closure detector to meet both real-time constraint and high detection accuracy. To address the problem, the proposed system adopts an effective key frame selection strategy which selects and compares only distinct meaningful ones from continuously incoming images during navigation, and so it can reduce greatly image comparisons for loop detection. Moreover, in order to improve detection accuracy and efficiency, the system represents each key frame image as a bag of visual words, and maintains indexes for them using DBoW database system. The experiments with TUM benchmark datasets demonstrates high performance of the proposed visual loop closure detector.

Modified Speeded Up Robust Features(SURF) for Performance Enhancement of Mobile Visual Search System (모바일 시각 검색 시스템의 성능 향상을 위하여 개선된 Speeded Up Robust Features(SURF) 알고리듬)

  • Seo, Jung-Jin;Yoona, Kyoung-Ro
    • Journal of Broadcast Engineering
    • /
    • v.17 no.2
    • /
    • pp.388-399
    • /
    • 2012
  • In the paper, we propose enhanced feature extraction and matching methods for a mobile environment based on modified SURF. We propose three methods to reduce the computational complexity in a mobile environment. The first is to reduce the dimensions of the SURF descriptor. We compare the performance of existing 64-dimensional SURF with several other dimensional SURFs. The second is to improve the performance using the sign of the trace of the Hessian matrix. In other words, feature points are considered as matched if they have the same sign for the trace of the Hessian matrix, otherwise considered not matched. The last one is to find the best distance-ratio which is used to determine the matching points. We find the best distance-ratio through experiments, and it gives the relatively high accuracy. Finally, existing system which is based on normal SURF method is compared with our proposed system which is based on these three proposed methods. We present that our proposed system shows reduced response time while preserving reasonably good matching accuracy.

The Visual Performance Evaluation of the Work planes with the Automated blind Control in Small Office Spaces

  • Park, Doo-Yong;Yoon, Kap-Chun;Kim, Kang-Soo
    • KIEAE Journal
    • /
    • v.14 no.1
    • /
    • pp.15-22
    • /
    • 2014
  • Among the various building envelope elements, the glass area takes up the largest portion in the office building design. However, a large area of glass can cause problems such as excessive solar radiation, thermal comfort, and glare. Thus it is important to install the glass area to an appropriate level, and control solar radiation and inflow of daylight with blind devices. This study aims to improve the visual performance of the work plane through the automatic control of the venetian blinds. A total of eight kinds of control strategies were chosen; Case 1 does not control the blinds, Case 2 with the blind slats fixed at the angle of 0 degree, Case 3 to 6 using the existing blind control programs, and Case 7 and 8 with improved blind control. Case 3 with 90 degrees had the best energy performance, but the average indoor illuminance was 113lux, which is below the standards. Cases 4 and 5 showed higher levels of interior daylight illuminance with the average of 281lux and 403lux respectively. However, the fixed angles may have difficulties controlling excessive direct sunlight coming into the room and may cause glare. Cases 6 and 7 used sun tracking angle control and cut-off angle control, and the average interior illuminance was measured 250lux and 385lux respectively. Case 8 used the cut-off angle control in an hourly manner, satisfying the standard illuminance of 400lux with an average interior illuminance of 561lux. It was evaluated to be the best method to control direct solar radiation and to guarantee proper level of interior illumination.

A Color Correction Method for High-Dynamic-Range Images Based on Human Visual Perception (인간 시각 인지에 기반을 둔 높은 동적폭을 갖는 영상 보정 방법)

  • Choi, Ho-Hyoung;Song, Jae-Wook;Jung, Na-Ra;Kang, Hyun-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.9
    • /
    • pp.1027-1038
    • /
    • 2015
  • For last several decades, the color correction methods have been proposed for HDR(high dynamic range) images. However, color distortion problems take place after correcting the colors such as halos, dominant color as well known. Accordingly, this article presents a novel approach in which the method consists of tone-mapping method and cone response function. In the proposed method, the tone mapping method is used to improve the contrast in the given HDR image based on chromatic and achromatic based on the CIEXYZ tristimulus value, expressed in c/m2. The cone response function is used to deal with mismatch between corrected image and displayed image as well as to estimate various human visual effects based on the CMCAT2000 color appearance model. The experimental results show that the proposed method yields better performance of color correction over the conventional method in subjective and quantitative quality, and color reproduction.

Comparison of Integration Methods of Speech and Lip Information in the Bi-modal Speech Recognition (바이모달 음성인식의 음성정보와 입술정보 결합방법 비교)

  • 박병구;김진영;최승호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.31-37
    • /
    • 1999
  • A bimodal speech recognition using visual and audio information has been proposed and researched to improve the performance of ASR(Automatic Speech Recognition) system in noisy environments. The integration method of two modalities can be usually classified into an early integration and a late integration. The early integration method includes a method using a fixed weight of lip parameters and a method using a variable weight according to speech SNR information. The 4 late integration methods are a method using audio and visual information independently, a method using speech optimal path, a method using lip optimal path and a way using speech SNR information. Among these 6 methods, the method using the fixed weight of lip parameter showed a better recognition rate.

  • PDF

An integrated visual-inertial technique for structural displacement and velocity measurement

  • Chang, C.C.;Xiao, X.H.
    • Smart Structures and Systems
    • /
    • v.6 no.9
    • /
    • pp.1025-1039
    • /
    • 2010
  • Measuring displacement response for civil structures is very important for assessing their performance, safety and integrity. Recently, video-based techniques that utilize low-cost high-resolution digital cameras have been developed for such an application. These techniques however have relatively low sampling frequency and the results are usually contaminated with noises. In this study, an integrated visual-inertial measurement method that combines a monocular videogrammetric displacement measurement technique and a collocated accelerometer is proposed for displacement and velocity measurement of civil engineering structures. The monocular videogrammetric technique extracts three-dimensional translation and rotation of a planar target from an image sequence recorded by one camera. The obtained displacement is then fused with acceleration measured from a collocated accelerometer using a multi-rate Kalman filter with smoothing technique. This data fusion not only can improve the accuracy and the frequency bandwidth of displacement measurement but also provide estimate for velocity. The proposed measurement technique is illustrated by a shake table test and a pedestrian bridge test. Results show that the fusion of displacement and acceleration can mitigate their respective limitations and produce more accurate displacement and velocity responses with a broader frequency bandwidth.

Salient Region Extraction based on Global Contrast Enhancement and Saliency Cut for Image Information Recognition of the Visually Impaired

  • Yoon, Hongchan;Kim, Baek-Hyun;Mukhriddin, Mukhiddinov;Cho, Jinsoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.2287-2312
    • /
    • 2018
  • Extracting key visual information from images containing natural scene is a challenging task and an important step for the visually impaired to recognize information based on tactile graphics. In this study, a novel method is proposed for extracting salient regions based on global contrast enhancement and saliency cuts in order to improve the process of recognizing images for the visually impaired. To accomplish this, an image enhancement technique is applied to natural scene images, and a saliency map is acquired to measure the color contrast of homogeneous regions against other areas of the image. The saliency maps also help automatic salient region extraction, referred to as saliency cuts, and assist in obtaining a binary mask of high quality. Finally, outer boundaries and inner edges are detected in images with natural scene to identify edges that are visually significant. Experimental results indicate that the method we propose in this paper extracts salient objects effectively and achieves remarkable performance compared to conventional methods. Our method offers benefits in extracting salient objects and generating simple but important edges from images containing natural scene and for providing information to the visually impaired.

Emotion Recognition in Children With Autism Spectrum Disorder: A Comparison of Musical and Visual Cues (음악 단서와 시각 단서 조건에 따른 학령기 자폐스펙트럼장애 아동과 일반아동의 정서 인식 비교)

  • Yoon, Yea-Un
    • Journal of Music and Human Behavior
    • /
    • v.19 no.1
    • /
    • pp.1-20
    • /
    • 2022
  • The purpose of this study was to evaluate how accurately children with autism spectrum disorder (ASD; n = 9) recognized four basic emotions (i.e., happiness, sadness, anger, and fear) following musical or visual cues. Their performance was compared to that of typically developing children (TD; n = 14). All of the participants were between the ages of 7 and 13 years. Four musical cues and four visual cues for each emotion were presented to evaluate the participants' ability to recognize the four basic emotions. The results indicated that there were significant differences between the two groups between the musical and visual cues. In particular, the ASD group demonstrated significantly less accurate recognition of the four emotions compared to the TD group. However, the emotion recognition of both groups was more accurate following the musical cues compared to the visual cues. Finally, for both groups, their greatest recognition accuracy was for happiness following the musical cues. In terms of the visual cues, the ASD group exhibited the greatest recognition accuracy for anger. This initial study support that musical cues can facilitate emotion recognition in children with ASD. Further research is needed to improve our understanding of the mechanisms involved in emotion recognition and the role of sensory cues play in emotion recognition for children with ASD.