• Title/Summary/Keyword: Visual feedback

Search Result 430, Processing Time 0.037 seconds

The Effects of Sit-to-stand Training with Various Foot Positions Combined with Visual Feedback on Muscle Onset Time and Balance in Stroke Patients (다양한 발위치와 시각적 피드백 유무에 따른 일어서기 훈련이 뇌졸중환자의 일어서기 동작 시 근수축개시시간과 균형능력에 미치는 영향)

  • Kim, Su-jin;Son, Ho-hee
    • PNF and Movement
    • /
    • v.20 no.1
    • /
    • pp.115-123
    • /
    • 2022
  • Purpose: The aim of this study was to investigate the effects of sit-to-stand training with various foot positions combined with visual feedback on muscle onset time and balance in stroke patients. Methods: Thirty stroke patients were randomly assigned into three standing groups: one with a symmetrical foot position (SSF; n = 10), one with an asymmetrical foot position with the affected foot at the rear (SAF; n = 10), and one with visual feedback and an asymmetrical foot position (SVAF; n = 10). Sit-to-stand training with different foot positions was performed for 30 minutes a day, 5 times a week, for a total of 4 weeks. The effects on muscle onset time and balance were assessed. Results: In a comparison of the onset time of muscle contraction, the onset time of the affected side tibialis anterior and less-affected side gastrocnemius muscle and tibialis anterior was significantly shortened in the SAVF group. And onset time of the less-affected side tibialis anterior was shortened in the SAF group. There was a significant difference in the result of functional reach testing in the SVAF group. Conclusion: VRG was effective in improving muscle activity and balance in elderly women aged 65 and older. In this study, sit-to-stand training with visual feedback and asymmetrical foot position showed significant functional improvement.

Improved Image Feedback Scheme for the Control of Telerobotics Equipment

  • Lee, Jong-Kwang;Kim, Byeong-Nyeon;Kang, E-Sok;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.116.5-116
    • /
    • 2002
  • In remote control of telerobotics equipment, the real-time visual feedback is necessary in order to facilitate real-time control. Because of the network congestion and the associated delays, the real-time image feedback is generally difficult in the public networks like internet. If the remote user is not able to receive the image feedback within a certain time, the work performance may tend to decrease, and it makes difficulties to control of the telerobotics equipment. In this paper, we propose an improved visual feedback scheme over the internet for telerobotics system. The size of a remote site image and its quality are adjusted for efficient transmission. The constructed system has a be...

  • PDF

A study on Development of Precise Orientation control Algorithm of the Mobile Robot Based Vision Technology (비전기술에 의한 모바일 로봇의 정밀 자세 제어 알고리즘 개발에 관한 연구)

  • Sim, Hyun-Seok;Kim, Tae-Gwan
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.2
    • /
    • pp.129-138
    • /
    • 2015
  • This study describe a new method to control posture and velocity for a wheeled mobile robot using visual feedback control method with a position based visual feedback. To slove the problem of vibration phenomena which were shown in the previous researches using a simple switching function based on a threshold, the proposed visual servo control law introduces the fusion function based on a blending function. The chattering problem and rapid motion of the mobile robot can be eliminated. And we consider the nonlinearity of the wheeled mobile robot unlike the previous visual servo control laws using linear control methods to improve the performances of the visual servo control law. The proposed posture control law using visual servoing is verified by a theoretical analysis and simulation and experimental results.

011-line Visual Feedback Control of Industrial Robot Manipulator (산업용 로봇 매니퓰레이터의 오프라인 영상피드백 제어)

  • 신행봉;정동연;김용태;이종두;이강두
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.567-572
    • /
    • 2002
  • The equipment of industrial robot in manufacturing and assembly lines has rapidly increased. In order to achieve high productivity and flexibility, it becomes very important to develop the visual feedback control system with Off-Line Programming System(OLPS ). We can save much efforts and time in adjusting robots to newly defined workcells by using Off-Line Programming System. A proposed visual calibration scheme is based on position-based visual feedback. The visual calibration system is composed of a personal computer, an image processing board, a video monitor, and one camera. The calibration program firstly generates predicted images of objects in an assumed end-effector position. The process to generate predicted images consists of projection to screen-coordinates, visible range test, and construction of simple silhouette figures. Then, camera images acquired are compared with predicted ones for updating position and orientation data. Computation of error is very simple because the scheme is based on perspective projection, which can be also expanded to experimental results. Computation time can be extremely reduced because the proposed method does not require the precise calculation of tree-dimensional object data and image Jacobian.

  • PDF

Off-line Visual Feedback Control of Robot Manipulator (로봇 매니퓰레이터의 오프라인 영상피드백 제어)

  • 신행봉;정동연;이종두;이강두;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.140-145
    • /
    • 2001
  • The equipment of industrial robot in manufacturing and assembly lines has rapidly increased. In order to achieve high productivity and flexibility, it becomes very important to develop the visual feedback control system with Off-Line Programming System(OLPS). We can save much efforts and time in adjusting robots to newly defined workcells by using Off-Line Programming System. A proposed visual calibration scheme is based on position-based visual feedback. The visual calibration system is composed of a personal computer, an image processing board, a video monitor, and one camera. The calibration program firstly generates predicted images of objects in an assumed end-effector position. The process to generate predicted images consists of projection to screen-coordinates, visible range test, and construction of simple silhouette figures. Then, camera images acquired are compared with predicted ones for updating position and orientation data. Computation of error is very simple because the scheme is based on perspective projection, which can be also expanded to experimental results. Computation time can be extremely reduced because the proposed method does not require the precise calculation of tree-dimensional object data and image Jacobian.

  • PDF

Effects of Proprioceptive Control on the Balance in Patients With Chronic Hemiplegia (고유수용성 조절이 만성 편마비 환자의 균형에 미치는 영향)

  • Hwang, Byong-Yong
    • Physical Therapy Korea
    • /
    • v.11 no.1
    • /
    • pp.69-74
    • /
    • 2004
  • Hemiplegic patients usually present with difficulty maintaining balance. Balance retraining is the major component of rehabilitation program for patients with neurological impairment. The purpose of this study was to investigate the effects of prorpioceptive exercise program on the improvement of balance in the patients with chronic hemiplegia. Thirty subjects (mean age $57.0{\pm}9.8$) were recruited and the subjects were divided into a proprioceptive group and a visual group. The subjects for the proprioceptive group were participated in the proprioceptive exercise program for 4 weeks, and the visual group were treated visual feedback training using Balance Master. At 4 week follow-up test, Berg Balance Scale significantly improved 1.1 points (p<.01), Timed Up & Go test improved 4.2 second (p<.01), and weight distribution during sit to stand also improved 5.0% (p<.01). As a result of this study, the proprioceptive control approach improved dynamic balance in the patients with chronic hemiplegia. It is suggested that there was no benefit of visual feedback training like as Balance Master when administrated in combination with other physical therapy interventions, compared with physical therapy alone using proprioceptive control approach to hemiplegia.

  • PDF

Development of a Virtual Bicycle Simulator for the Rehabilitation Training of Postural Balance (자세균형 재활 훈련을 위한 가상 자전거 시뮬레이터 개발)

  • Jeong, Sung-Hwan;Piao, Yong-Jun;Kwon, Tae-Kyu;Kim, Nam-Gyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.10
    • /
    • pp.137-145
    • /
    • 2007
  • The purpose of this study is developing a virtual bicycle system for improving the ability of postural balance control for adults in various age groups. The system consists of an exercise bicycle that allows tilt in accordance with the postural balance of the subject in the system, a visual display that shows virtual road, and a visual feedback system. The rider of the system tries to maintain balance on the bicycle with a visual feedback of a virtual road while the pedaling speed, the heading direction, and various weight distribution information are updated to the subject as visual feedbacks in the display. A series of experiments were performed with various subjects to find the factors related to postural balance control in the system. The related parameters obtained were weight shift, magnitude of the deviation from the center of the virtual road, and variables related to the movement of the center of pressure. The results found that the ability to control postural balance in the system improved with the presentation of visual feedback information of the distribution of weight. It was also found that the general performance of the subject on balance in the system improved after ten days long training. The results show that the newly developed system can be used for the diagnosis of postural balance as well as for the stimulation of various senses such as vision and somatic sense in the field of rehabilitation training.

A Robust Visual Feedback Control with Integral Compensation for Robot Manipulators (적분 보상을 포함하는 로봇 매니퓰레이터의 시각 궤환 강인 제어)

  • Lee Kang-Woong;Jie Min-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.294-299
    • /
    • 2006
  • This paper studies a visual feedback control scheme for robot manipulators with camera-in-hand configurations. We design a robust controller that compensates for bounded parametric uncertainties of robot mechanical dynamics. In order to reduce steady state tracking error of the robot arms due to uncertain dynamics, integral action is included in the control input. Using the Lyapunov stability criterion, the uniform ultimate boundedness of the tracking error is proved. Simulation and experimental results with a 2-1ink robot manipulator illustrate the robustness and effectiveness of the proposed control algorithm.

A Navigation Algorithm using Locomotion Interface with Two 6-DOF Robotic Manipulators (ICCAS 2005)

  • Yoon, Jung-Won;Ryu, Je-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2211-2216
    • /
    • 2005
  • This paper describes a novel navigation algorithm using a locomotion interface with two 6-DOF parallel robotic manipulators. The suggested novel navigation system can induce user's real walking and generate realistic visual feedback during navigation, using robotic manipulators. For realistic visual feedback, the virtual environment is designed with three components; 3D object modeler for buildings and terrains, scene manager and communication manager component. The walking velocity of the user is directly translated to VR actions for navigation. Finally, the functions of the RPC interface are utilized for each interaction mode. The suggested navigation system can allow a user to explore into various virtual terrains with real walking and realistic visual feedback.

  • PDF

Control of Robot Manipulators Using Robust Visual Feedback Controller with Integrator (적분기를 포함하는 시각궤환 강인제어기를 사용한 로봇 제어)

  • Jie, Min-Seok;Kim, Chin-Su;Lee, Kang-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.89-91
    • /
    • 2005
  • In this paper, we propose a robust visual feedback controller with integral action for tracking control of n-link robot manipulators in the presence of constant bounded parametric uncertainties. The proposed control input has robustness to the parametric uncertainty and reduces tracking error in the steady-state. The stability of the closed-loop system is shown by Lyapunov method. The effectiveness of the proposed method is shown by simulation results on the 5-link robot manipulators with two degree of freedom.

  • PDF