• Title/Summary/Keyword: Visual Inspection Model

Search Result 117, Processing Time 0.027 seconds

D4AR - A 4-DIMENSIONAL AUGMENTED REALITY - MODEL FOR AUTOMATION AND VISUALIZATION OF CONSTRUCTION PROGRESS MONITORING

  • Mani Golparvar-Fard;Feniosky Pena-Mora
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.30-31
    • /
    • 2009
  • Early detection of schedule delay in field construction activities is vital to project management. It provides the opportunity to initiate remedial actions and increases the chance of controlling such overruns or minimizing their impacts. This entails project managers to design, implement, and maintain a systematic approach for progress monitoring to promptly identify, process and communicate discrepancies between actual and as-planned performances as early as possible. Despite importance, systematic implementation of progress monitoring is challenging: (1) Current progress monitoring is time-consuming as it needs extensive as-planned and as-built data collection; (2) The excessive amount of work required to be performed may cause human-errors and reduce the quality of manually collected data and since only an approximate visual inspection is usually performed, makes the collected data subjective; (3) Existing methods of progress monitoring are also non-systematic and may also create a time-lag between the time progress is reported and the time progress is actually accomplished; (4) Progress reports are visually complex, and do not reflect spatial aspects of construction; and (5) Current reporting methods increase the time required to describe and explain progress in coordination meetings and in turn could delay the decision making process. In summary, with current methods, it may be not be easy to understand the progress situation clearly and quickly. To overcome such inefficiencies, this research focuses on exploring application of unsorted daily progress photograph logs - available on any construction site - as well as IFC-based 4D models for progress monitoring. Our approach is based on computing, from the images themselves, the photographer's locations and orientations, along with a sparse 3D geometric representation of the as-built scene using daily progress photographs and superimposition of the reconstructed scene over the as-planned 4D model. Within such an environment, progress photographs are registered in the virtual as-planned environment, allowing a large unstructured collection of daily construction images to be interactively explored. In addition, sparse reconstructed scenes superimposed over 4D models allow site images to be geo-registered with the as-planned components and consequently, a location-based image processing technique to be implemented and progress data to be extracted automatically. The result of progress comparison study between as-planned and as-built performances can subsequently be visualized in the D4AR - 4D Augmented Reality - environment using a traffic light metaphor. In such an environment, project participants would be able to: 1) use the 4D as-planned model as a baseline for progress monitoring, compare it to daily construction photographs and study workspace logistics; 2) interactively and remotely explore registered construction photographs in a 3D environment; 3) analyze registered images and quantify as-built progress; 4) measure discrepancies between as-planned and as-built performances; and 5) visually represent progress discrepancies through superimposition of 4D as-planned models over progress photographs, make control decisions and effectively communicate those with project participants. We present our preliminary results on two ongoing construction projects and discuss implementation, perceived benefits and future potential enhancement of this new technology in construction, in all fronts of automatic data collection, processing and communication.

  • PDF

A Study on Model for Drivable Area Segmentation based on Deep Learning (딥러닝 기반의 주행가능 영역 추출 모델에 관한 연구)

  • Jeon, Hyo-jin;Cho, Soo-sun
    • Journal of Internet Computing and Services
    • /
    • v.20 no.5
    • /
    • pp.105-111
    • /
    • 2019
  • Core technologies that lead the Fourth Industrial Revolution era, such as artificial intelligence, big data, and autonomous driving, are implemented and serviced through the rapid development of computing power and hyper-connected networks based on the Internet of Things. In this paper, we implement two different models for drivable area segmentation in various environment, and propose a better model by comparing the results. The models for drivable area segmentation are using DeepLab V3+ and Mask R-CNN, which have great performances in the field of image segmentation and are used in many studies in autonomous driving technology. For driving information in various environment, we use BDD dataset which provides driving videos and images in various weather conditions and day&night time. The result of two different models shows that Mask R-CNN has higher performance with 68.33% IoU than DeepLab V3+ with 48.97% IoU. In addition, the result of visual inspection of drivable area segmentation on driving image, the accuracy of Mask R-CNN is 83% and DeepLab V3+ is 69%. It indicates Mask R-CNN is more efficient than DeepLab V3+ in drivable area segmentation.

Applying Meta-model Formalization of Part-Whole Relationship to UML: Experiment on Classification of Aggregation and Composition (UML의 부분-전체 관계에 대한 메타모델 형식화 이론의 적용: 집합연관 및 복합연관 판별 실험)

  • Kim, Taekyung
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.99-118
    • /
    • 2015
  • Object-oriented programming languages have been widely selected for developing modern information systems. The use of concepts relating to object-oriented (OO, in short) programming has reduced efforts of reusing pre-existing codes, and the OO concepts have been proved to be a useful in interpreting system requirements. In line with this, we have witnessed that a modern conceptual modeling approach supports features of object-oriented programming. Unified Modeling Language or UML becomes one of de-facto standards for information system designers since the language provides a set of visual diagrams, comprehensive frameworks and flexible expressions. In a modeling process, UML users need to consider relationships between classes. Based on an explicit and clear representation of classes, the conceptual model from UML garners necessarily attributes and methods for guiding software engineers. Especially, identifying an association between a class of part and a class of whole is included in the standard grammar of UML. The representation of part-whole relationship is natural in a real world domain since many physical objects are perceived as part-whole relationship. In addition, even abstract concepts such as roles are easily identified by part-whole perception. It seems that a representation of part-whole in UML is reasonable and useful. However, it should be admitted that the use of UML is limited due to the lack of practical guidelines on how to identify a part-whole relationship and how to classify it into an aggregate- or a composite-association. Research efforts on developing the procedure knowledge is meaningful and timely in that misleading perception to part-whole relationship is hard to be filtered out in an initial conceptual modeling thus resulting in deterioration of system usability. The current method on identifying and classifying part-whole relationships is mainly counting on linguistic expression. This simple approach is rooted in the idea that a phrase of representing has-a constructs a par-whole perception between objects. If the relationship is strong, the association is classified as a composite association of part-whole relationship. In other cases, the relationship is an aggregate association. Admittedly, linguistic expressions contain clues for part-whole relationships; therefore, the approach is reasonable and cost-effective in general. Nevertheless, it does not cover concerns on accuracy and theoretical legitimacy. Research efforts on developing guidelines for part-whole identification and classification has not been accumulated sufficient achievements to solve this issue. The purpose of this study is to provide step-by-step guidelines for identifying and classifying part-whole relationships in the context of UML use. Based on the theoretical work on Meta-model Formalization, self-check forms that help conceptual modelers work on part-whole classes are developed. To evaluate the performance of suggested idea, an experiment approach was adopted. The findings show that UML users obtain better results with the guidelines based on Meta-model Formalization compared to a natural language classification scheme conventionally recommended by UML theorists. This study contributed to the stream of research effort about part-whole relationships by extending applicability of Meta-model Formalization. Compared to traditional approaches that target to establish criterion for evaluating a result of conceptual modeling, this study expands the scope to a process of modeling. Traditional theories on evaluation of part-whole relationship in the context of conceptual modeling aim to rule out incomplete or wrong representations. It is posed that qualification is still important; but, the lack of consideration on providing a practical alternative may reduce appropriateness of posterior inspection for modelers who want to reduce errors or misperceptions about part-whole identification and classification. The findings of this study can be further developed by introducing more comprehensive variables and real-world settings. In addition, it is highly recommended to replicate and extend the suggested idea of utilizing Meta-model formalization by creating different alternative forms of guidelines including plugins for integrated development environments.

Study on the Development of Program for Measuring Preference of Portrait based on Sensibility (감성기반 인물사진 선호도 측정 프로그램 개발 연구)

  • Lee, Chang-Seop;Har, Dong-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.2
    • /
    • pp.178-187
    • /
    • 2018
  • This study aimed to develop a model of the program for automation measuring the preference of the portraits based on the relationship between the image quality factors and the preferences in the portraits for manufacturers aiming at high utilization of the users. in order to proceed with the evaluation, the image quality measurement was divided into objective and subjective items, and the evaluation was done through image processing and statistical methods. the image quality measurement items can be divided into objective evaluation items and subjective evaluation items. RSC Contrast, Dynamic Range and Noise were selected for the objective evaluation items, and the numerical values were statistically analyzed and evaluated through the program. Exposure, Color Tone, composition of person, position of person, and out of focus were selected for subjective evaluation items and evaluated by image processing method. By applying objective and subjective assessment items, the results were very accurate, with the results obtained by the developed program and the results of the actual visual inspection. but since the currently developed program can be evalua ted only after facial recognition of the person, future research will need to develop a program that can evaluate all kinds of portraits.

Damage Evaluation of Track Components for Sleeper Floating Track System in Urban Transit (도시철도 침목플로팅궤도 궤도구성품의 손상평가)

  • Choi, Jung-Youl;Kim, Hak-Seon;Han, Kyung-Sung;Jang, Cheol-Ju;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.4
    • /
    • pp.387-394
    • /
    • 2019
  • In this study, in order to evaluate the damage and deterioration of the track components of sleeper floating track (STEDEF), the field samples(specimens) were taken from the serviced line over 20 years old, and the track components were visually inspected, and investigated by laboratory tests and finite element analysis. As a result of visual inspection, the damage of the rail pad and fastener was slight, but the rubber boot was worn and torn at the edges of bottom. The resilience pads were clearly examined for thickness reduction and fatigue hardening layer. As a result of spring stiffness test of rail pad and resilience pad, the deterioration of rail pad was insignificant, but the deterioration of resilience pad exceeded design standard value. Therefore resilience pad was directly affected by train passing tonnage. As a result of comparing the deterioration state of the field sample and the numerical analysis result, the stress and displacement concentration position of the finite element model and the damage position of the field sample were coincident.

Image-Based Automatic Bridge Component Classification Using Deep Learning (딥러닝을 활용한 이미지 기반 교량 구성요소 자동분류 네트워크 개발)

  • Cho, Munwon;Lee, Jae Hyuk;Ryu, Young-Moo;Park, Jeongjun;Yoon, Hyungchul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.751-760
    • /
    • 2021
  • Most bridges in Korea are over 20 years old, and many problems linked to their deterioration are being reported. The current practice for bridge inspection mainly depends on expert evaluation, which can be subjective. Recent studies have introduced data-driven methods using building information modeling, which can be more efficient and objective, but these methods require manual procedures that consume time and money. To overcome this, this study developed an image-based automaticbridge component classification network to reduce the time and cost required for converting the visual information of bridges to a digital model. The proposed method comprises two convolutional neural networks. The first network estimates the type of the bridge based on the superstructure, and the second network classifies the bridge components. In avalidation test, the proposed system automatically classified the components of 461 bridge images with 96.6 % of accuracy. The proposed approach is expected to contribute toward current bridge maintenance practice.

Evaluation and Comparison of Effects of Air and Tomato Leaf Temperatures on the Population Dynamics of Greenhouse Whitefly (Trialeurodes vaporariorum) in Cherry Tomato Grown in Greenhouses (시설내 대기 온도와 방울토마토 잎 온도가 온실가루이(Trialeurodes vaporariorum)개체군 발달에 미치는 영향 비교)

  • Park, Jung-Joon;Park, Kuen-Woo;Shin, Key-Il;Cho, Ki-Jong
    • Horticultural Science & Technology
    • /
    • v.29 no.5
    • /
    • pp.420-432
    • /
    • 2011
  • Population dynamics of greenhouse whitefly, Trialeurodes vaporariorum (Westwood), were modeled and simulated to compare the temperature effects of air and tomato leaf inside greenhouse using DYMEX model simulator (pre-programed module based simulation program developed by CSIRO, Australia). The DYMEX model simulator consisted of temperature dependent development and oviposition modules. The normalized cumulative frequency distributions of the developmental period for immature and oviposition frequency rate and survival rate for adult of greenhouse whitefly were fitted to two-parameter Weibull function. Leaf temperature on reversed side of cherry tomato leafs (Lycopersicon esculentum cv. Koko) was monitored according to three tomato plant positions (top, > 1.6 m above the ground level; middle, 0.9 - 1.2 m; bottom, 0.3 - 0.5 m) using an infrared temperature gun. Air temperature was monitored at same three positions using a Hobo self-contained temperature logger. The leaf temperatures from three plant positions were described as a function of the air temperatures with 3-parameter exponential and sigmoidal models. Data sets of observed air temperature and predicted leaf temperatures were prepared, and incorporated into the DYMEX simulator to compare the effects of air and leaf temperature on population dynamics of greenhouse whitefly. The number of greenhouse whitefly immatures was counted by visual inspection in three tomato plant positions to verify the performance of DYMEX simulation in cherry tomato greenhouse where air and leaf temperatures were monitored. The egg stage of greenhouse whitefly was not counted due to its small size. A significant positive correlation between the observed and the predicted numbers of immature and adults were found when the leaf temperatures were incorporated into DYMEX simulation, but no significant correlation was observed with the air temperatures. This study demonstrated that the population dynamics of greenhouse whitefly was affected greatly by the leaf temperatures, rather than air temperatures, and thus the leaf surface temperature should be considered for management of greenhouse whitefly in cherry tomato grown in greenhouses.