• Title/Summary/Keyword: Visual Feedback Training

Search Result 118, Processing Time 0.034 seconds

Use of real-time ultrasound imaging for biofeedback of diaphragm motion during normal breathing in healthy subjects

  • Cho, Ji-Eun;Hwang, Dal-Yeon;Hahn, Joohee;Lee, Wan-Hee
    • Physical Therapy Rehabilitation Science
    • /
    • v.7 no.3
    • /
    • pp.95-101
    • /
    • 2018
  • Objective: To determine if the provision of visual biofeedback using real-time rehabilitative ultrasound imaging (RUSI) enhances the acquisition and retention of diaphragm muscle recruitment during exercise. Design: Two group pretest posttest design. Methods: Thirty healthy subjects were randomly assigned to the verbal feedback group (VG, n=15) or the visual and verbal feedback group (VVG, n=15). The VG performed breathing exercises 10 times with verbal feedback, and the VVG also performed breathing exercises 10 times with verbal feedback and visual feedback with the use of RUSI to measure changes in diaphragm thickness (DT). For DT, the mid-axillary lines between ribs 8 and 9 on both sides were measured in standing, and then the chest wall was perpendicularly illuminated using a linear transducer with the patients in supine to observe the region between rib 8 and 9 and to obtain 2-dimensional images. DT was measured as the distance between the two parallel lines that appeared bright in the middle of the pleura and the peritoneum. After one week, three repetitions (follow-up session) were performed to confirm retention effects. Intra- and between- group percent changes in diaphragm muscle thickness were assessed. Results: In the VVG, the intervention value had a medium effect size compared to the baseline value, but the follow-up value decreased to a small effect size. In the between-group comparisons, during the intervention session, the VVG showed no significant effect on percent change of DT but had a medium effect size compared to the VG (p=0.050, Cohen's d=0.764). During the follow-up session, retention effect did not persist (p=0.311, Cohen's d=0.381). Conclusions: RUSI can be used to provide visual biofeedback and improve performance and retention in the ability to activate the diaphragm muscle in healthy subjects. Future research needs to establish a protocol for respiratory intervention to maintain the effect of diaphragmatic breathing training using RUSI with visual feedback.

Walkway system for measuring and training in gait

  • Hirokawa, Sunji;Matsumura, Kouji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10a
    • /
    • pp.797-800
    • /
    • 1987
  • We developed a biofeedback gait training system; a 12 m measuring walkway with a training walker which moves at prescribed velocity. The walkway measures a.11 temporal and distance factors of gait. This system provides visual feedback for distance factors and auditory one for temporal at the prescribed walking velocity. Experiments were performed on normal and degenerative knee joint subjects, and this system was verified to be very useful.

  • PDF

The Effects of Visual Feedback Self Exercise on Postural Control in Stroke Patients

  • Hwang, Seong-Soo;Lee, Je-Hyeok;Choi, Yul-Jung
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.12 no.4
    • /
    • pp.105-112
    • /
    • 2017
  • PURPOSE: The purpose of this research was to know the effect of visual feedback self exercise (VFSE) on postural control in stroke patients. METHODS: 26 CVA patients were participated. The experimental group (EG) 12 (46.2%) and the control group (CG) 14 (53.8%), 17 males and 9 females. The subjects preformed VFSE on training instrument 10 minutes for 20 times in 2-3 weeks. The test was done 3 times. RESULTS: There were no statistically significant differences of the general characteristics of subjects between EG and CG by sex, affected site, muscle tone, sensory deficit, unilateral neglects, and vestibular dysfunction. The postural control effects of VFSE, in the EG showed that there were statistically significant differences among the tests during VFSE. However in the CG there were no statistically significant differences among the tests during VFSE. Also there was statistically significant difference between EG and CG after VFSE (p<.05). On the right hemiplegic EG showed that there was statistically significant difference between premid test and pre-post test after VFSE. But, the left hemiplegic EG showed that there was no statistically significant difference between before and after VFSE with all of tests. CONCLUSION: CVA patients had significant different of body weight ratio between hemiplegic side and the other side. This research suggested that CVA patients need self exercise with visual feedback for the improvement postural control ability. Therefore Physical therapist should not only prescribe hand-on exercise but also need to teach them self sensory feedback exercise to help them improve their postural control.

Effects of Proprioceptive Neuromuscular Facilitation and Visual-Feedback based Joint Position Reproduction Training on the Level of Ankle Proprioception and One-leg Standing Balance Ability (고유 수용성 신경근 촉진법과 시각 되먹임 기반 관절재현 훈련이 발목관절의 고유 수용성 감각 수준과 한 발 서기 균형 능력에 미치는 영향)

  • Ree, Jae Sun;Kim, Jongho;Kang, Minjoo;Hwang, Jisun;Hwang, Seonhong
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.81-93
    • /
    • 2022
  • Proprioception training has been considered a secondary method to facilitate postural control ability. This study investigated the effects of two different proprioception training methods - the proprioceptive neuromuscular facilitation (PNF) and visual feedback-based joint position and force reproduction (VF) - on postural control advancements. Sixteen healthy people volunteered for this study, and they randomly grouped two. Each group participated in the PNF and VF training for three weeks. We evaluated each subject's proprioception levels and balance ability before and after the training. We used a clinometer and electromyogram (EMG) for VF training. The joint position reproduction test was also used to evaluate the position and force aspects of the proprioception level. We analyzed the trajectory of the center of pressure (COP) while subjects were standing on the firm floor and balance board with one leg using a pressure mat. The improvement of the position aspect of the proprioception level of the VF group (4.93±4.74°) was larger than that of the PNF group (-0.43±2.08°) significantly (p=0.012). The improvement of the anterior-posterior COP velocity of the PNF group (0.01±0.01 cm/s) was larger than that of VF group(0.002±0.01 cm/s) significantly (p=0.046). Changes of position error in the PNF group (rho=0.762, p=0.028) and tibialis anterior force reproduction error in the VF group showed a significantly strong relationship with balance ability variables. These results showed that different PNF and VF have different effects on improving two aspects of proprioception and their relationship with the balance ability. Therefore, these results might be useful for selecting proprioception or balance rehabilitation considering the clinical and patients' situation.

Physical therapist perception survey for muscle re-education through visual feedback obtained from rehabilitative ultrasound imaging

  • Yoo, Jun Sang;Ha, Hyun Geun;Jeong, Ju Ri;Ko, Young Jun;Lee, Wan-hee
    • Physical Therapy Rehabilitation Science
    • /
    • v.5 no.1
    • /
    • pp.47-52
    • /
    • 2016
  • Objective: This study surveyed the perceptions of physical therapists on muscle re-education through visual feedback obtained from rehabilitative ultrasound imaging (RUSI). Design: Survey. Methods: For this study, 500 physical therapists who participated in a refresher training held by the Seoul City Association in March 2015 were selected for a questionnaire-based survey. Subjects were randomly selected targets physiotherapists who participated in a refresher training.The questionnaire had 21 items in total. Questions 1 to 15 could be answered by everyone. However, questions 16 to 21 could be answered only by people who used RUSI. Results: The majority of respondents were aged 20 to 30 years. Respondents in their twenties, thirties, forties, and fifties accounted for 32.4%, 40.2%, 21.9%, and 5.6%respectively. Therapists with careers spanning one to 5 years accounted for 27.8%, while those with careers spanning 5 to 10 years and 10 to 15 years accounted for 34.6% and 17.0%, respectively. Those with careers over 20 years accounted for 9.2%. The types of work have not been various including work related to the nervous system (49.0%), the musculoskeletal system (41.5%), sports (0.7%), juvenile physical therapy (4.2%), and others (4.6%). Conclusions: In this study, we examined the perceptions of physical therapists on rehabilitation ultrasound imaging used in muscle re-education. We also examined how to use this technique. Many therapists who participated in the refresher training were found to be unaware of RUSI. In the future, further investigations on RUSI for muscle re-education are required through refresher training or training lectures at the national level.

Design and Implementation of Speech-Training System for Voice Disorders (발성장애아동을 위한 발성훈련시스템 설계 및 구현)

  • 정은순;김봉완;양옥렬;이용주
    • Journal of Internet Computing and Services
    • /
    • v.2 no.1
    • /
    • pp.97-106
    • /
    • 2001
  • In this paper, we design and implement complement based speech training system for voice disorder. The system consists of three level of training: precedent training, training for speech apprehension and training for speech enhancement. To analyze speech of voice disorder, we extracted speech features as loudness, amplitude, pitch using digital signal processing technique. Extracted features are converted to graphic interface for visual feedback of speech by the system.

  • PDF

Applications of haptic feedbacks in medicine (의료분야에서의 햅틱 피드백 응용)

  • Quy, Pham Sy;Seo, An-Na;Kim, Hyung-Seok;Kim, Jee-In
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.203-213
    • /
    • 2009
  • Medicine is one of great application fields where Virtual Reality (VR) technologies have been successfully utilized. The VR technologies in medicine bring together an interdisciplinary community of computer scientists and engineers, physicians and surgeon, medical educator and students, military medical specialists, and biomedical futurists. The primary feedback of a VR system has been visual feedback. The complex geometry for graphic objects and utilizing hardware acceleration can be incorporated with in order to produce realistic virtual environments. To enhance human-computer interaction (HCI), in term of immersive experiences perceived by users, haptic, speech, olfactory and other non-traditional interfaces should also be exploited. Among those, hapic feedback has been tightly coupled with visual feedback. The combination of the two sensory feedbacks can give users more immersive, realistic and perceptive VR environments. Haptic feedback has been studied over decades and many haptic based VR systems have been developed. This paper focuses on haptic feedback in term of its medical usages. It presents a survey of haptic feedback techniques with their applications in medicine.

  • PDF

A Virtual Bike Simulator System for Balance Rehabilitation Training using Virtual Reality

  • Kim, Jong-Yun;Song, Chul-Gue;Kim, Nam-Gyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.153.1-153
    • /
    • 2001
  • This paper describes a development of rehabilitation training system for the postural balance control. A new rehabilitation training system, designated as a virtual cycling system, was developed to improve postural balance control by combining virtual reality technology with an unfixed bicycle. In this experiment, 20 normal adults were tested to investigate the influencing parameters of postural balance control. In order to evaluate the usefulness and the training effects of the system, several parameters Including path deviation, cycling velocity, cycling time, center of pressure, and head movement were evaluated and analyzed quantitatively. Also, to improve the effect of balance training, the visual feedback information related to the subject´s weight shift was ...

  • PDF

A VR Bike Simulator for Balance Rehabilitation Training

  • Kim, Jong-Yun;Song, Chul-Gue;Kim, Nam-Gyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.181.6-181
    • /
    • 2001
  • This paper describes a development of rehabilitation training system for the postural balance control. A new rehabilitation training system, designated as a virtual cycling system, was developed to improve postural balance control by combining virtual reality technology with an unfixed bicycle. In this experiment, 20 normal adults were tested to investigate the influencing parameters of postural balance control. In order to evaluate the usefulness and the training effects of the system, several parameters including path deviation, cycling velocity, cycling time, center of pressure, and head movement were evaluated and analyzed quantitatively. Also, to improve the effect of balance training, the visual feedback information related to the subject's weight shift was assessed to identify whether it was useful. It could be also known ...

  • PDF

Desigining a Feedback for Exercises Using a Wearable Device (웨어러블 디바이스를 활용한 운동 중 피드백 방식 연구 - 근력 운동에 대한 멀티 모달 피드백 적용을 중심으로 -)

  • Yoo, Hyunjin;Maeng, Wookjae;Lee, Joongseek
    • Journal of the HCI Society of Korea
    • /
    • v.11 no.3
    • /
    • pp.23-30
    • /
    • 2016
  • The landscape of the current fitness trackers is not only limited to the aerobic exercises but also the weight training is comparatively excluded. Recently, a few weight training fitness tracker was released, human-computer interaction was not well designed due to the lack of considering the context. Because body movement would be intense while doing exercises, having exercise performers hold or operate a device makes a negative experience. As the wearable device is always inseparable to body, it could provide effective feedback because holding or operating a device is not necessary. Therefore, this study aims to make the exercise performers feel a natural feedback through the wearable device to do effective exercises. As a result, this study identified three findings. First, the information which exercise performers most needed was 'during exercise.' and the most necessary information for exercise performers through wearable device's sensory feedback was about 'pace control' with counting and motivation. Second, the order of the most preferred presentation type of sensory feedback was auditory feedback, haptic feedback and visual feedback. Third, the satisfaction, utility, usefulness score of sensory feedback as same as the personal trainer's feedback. In conclusion, this study illustrated the feedback design implications using a wearable device while doing weight training and the possibilities that wearable device could be substitute for personal trainer.