• Title/Summary/Keyword: Vision-based Control

Search Result 687, Processing Time 0.027 seconds

Vision-based Kinematic Modeling of a Worm's Posture (시각기반 웜 자세의 기구학적 모형화)

  • Do, Yongtae;Tan, Kok Kiong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.3
    • /
    • pp.250-256
    • /
    • 2015
  • We present a novel method to model the body posture of a worm for vision-based automatic monitoring and analysis. The worm considered in this study is a Caenorhabditis elegans (C. elegans), which is popularly used for research in biological science and engineering. We model the posture by an open chain of a few curved or rigid line segments, in contrast to previously published approaches wherein a large number of small rigid elements are connected for the modeling. Each link segment is represented by only two parameters: an arc angle and an arc length for a curved segment, or an orientation angle and a link length for a straight line segment. Links in the proposed method can be readily related using the Denavit-Hartenberg convention due to similarities to the kinematics of an articulated manipulator. Our method was tested with real worm images, and accurate results were obtained.

A Lane Change Recognition System for Smart Cars (스마트카를 위한 차선변경 인식시스템)

  • Lee, Yong-Jin;Yang, Jeong-Ha;Kwak, Nojun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.1
    • /
    • pp.46-51
    • /
    • 2015
  • In this paper, we propose a vision-based method to recognize lane changes of an autonomous vehicle. The proposed method is based on six states of driving situations defined by the positional relationship between a vehicle and its nearest lane detected. With the combinations of these states, the lane change is detected. The proposed method yields 98% recognition accuracy of lane change even in poor situations with partially invisible lanes.

A study on inspection area using neural network for vision systems (비젼 시스템에서 신경 회로망을 이용한 검사 영역에 관한 연구)

  • Oh, Je-Hui;Cha, Young-Youp
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.378-383
    • /
    • 1998
  • A FOV, that stands for "Field Of View", refers to the maximum area where a camera could be wholly seen. If a FOV of CCD camera cannot the cover overall inspection area, the overall inspection area should be divided into sub-areas of size FOV. In this paper, we propose a new neural network-based FOV generation method by using a newly modified self-organizing map(SOM) which has multiple structure based on a self-organizing map, and uses new training rule that is composed of the movement, creation and deletion terms. Then, experiment results using real PCB indicate the superiority of the method developed in this study to the existing sequential method.al method.

  • PDF

Vision-based AGV Parking System (비젼 기반의 무인이송차량 정차 시스템)

  • Park, Young-Su;Park, Jee-Hoon;Lee, Je-Won;Kim, Sang-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.473-479
    • /
    • 2009
  • This paper proposes an efficient method to locate the automated guided vehicle (AGV) into a specific parking position using artificial visual landmark and vision-based algorithm. The landmark has comer features and a HSI color arrangement for robustness against illuminant variation. The landmark is attached to left of a parking spot under a crane. For parking, an AGV detects the landmark with CCD camera fixed to the AGV using Harris comer detector and matching descriptors of the comer features. After detecting the landmark, the AGV tracks the landmark using pyramidal Lucas-Kanade feature tracker and a refinement process. Then, the AGV decreases its speed and aligns its longitudinal position with the center of the landmark. The experiments showed the AGV parked accurately at the parking spot with small standard deviation of error under bright illumination and dark illumination.

Development of a Fast Alignment Method of Micro-Optic Parts Using Multi Dimension Vision and Optical Feedback

  • Han, Seung-Hyun;Kim, Jin-Oh;Park, Joong-Wan;Kim, Jong-Han
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.273-277
    • /
    • 2003
  • A general process of electronic assembly is composed of a series of geometric alignments and bonding/screwing processes. After assembly, the function is tested in a following process of inspection. However, assembly of micro-optic devices requires both processes to be performed in equipment. Coarse geometric alignment is made by using vision and optical function is improved by the following fine motion based on feedback of tunable laser interferometer. The general system is composed of a precision robot system for 3D assembly, a 3D vision guided system for geometric alignment and an optical feedback system with a tunable laser. In this study, we propose a new fast alignment algorithm of micro-optic devices for both of visual and optical alignments. The main goal is to find a fastest alignment process and algorithms with state-of-the-art technology. We propose a new approach with an optimal sequence of processes, a visual alignment algorithm and a search algorithm for an optimal optical alignment. A system is designed to show the effectiveness and efficiency of the proposed method.

  • PDF

Autonomous Control System of Compact Model-helicopter

  • Kang, Chul-Ung;Jun Satake;Takakazu Ishimatsu;Yoichi Shimomoto;Jun Hashimoto
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.95-99
    • /
    • 1998
  • We introduce an autonomous flying system using a model-helicopter. A feature of the helicopter is that autonomous flight is realized on the low-cost compact model-helicopter. Our helicopter system is divided into two parts. One is on the helicopter, and the other is on the land. The helicopter is loaded with a vision sensor and an electronic compass including a tilt sensor. The control system on the land monitors the helicopter movement and controls. We firstly introduce the configuration of our helicopter system with a vision sensor and an electronic compass. To determine the 3-D position and posture of helicopter, a technique of image recognition using a monocular image is described based on the idea of the sensor fusion of vision and electronic compass. Finally, we show an experiment result, which we obtained in the hovering. The result shows the effectiveness of our system in the compact model-helicopter.

  • PDF

stereo vision for monochromatic surface recognition based on competitive and cooperative neural network

  • Kang, Hyun-Deok;Jo, Kang-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.41.2-41
    • /
    • 2002
  • The stereo correspondence of two retinal images is one of the most difficult problems in stereo vision because the reconstruction of 3-D scene is a typical visual ill-posed problem. So far there still have been many unsolved problems, one of which is to reconstruct 3-D scene for a monochromatic surface because there is no clue to make a correspondence between two retinal images. We consider this problem with two layered self-organization neural network to simulate the competitive and cooperative interaction of binocular neurons. A...

  • PDF

Self-Localization of Mobile Robot Using Single Camera (단일 카메라를 이용한 이동로봇의 자기 위치 추정)

  • 김명호;이쾌희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.404-404
    • /
    • 2000
  • This paper presents a single vision-based sel(-localization method in an corridor environment. We use the Hough transform for finding parallel lines and vertical lines. And we use these cross points as feature points and it is calculated relative distance from mobile robot to these points. For matching environment map to feature points, searching window is defined and self-localization is performed by matching procedure. The result shows the suitability of this method by experiment.

  • PDF

Posture Stabilization Control for Mobile Robot using Marker Recognition and Hybrid Visual Servoing (마커인식과 혼합 비주얼 서보잉 기법을 통한 이동로봇의 자세 안정화 제어)

  • Lee, Sung-Goo;Kwon, Ji-Wook;Hong, Suk-Kyo;Chwa, Dong-Kyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.8
    • /
    • pp.1577-1585
    • /
    • 2011
  • This paper proposes a posture stabilization control algorithm for a wheeled mobile robot using hybrid visual servo control method with a position based and an image based visual servoing (PBVS and IBVS). To overcome chattering phenomena which were shown in the previous researches using a simple switching function based on a threshold, the proposed hybrid visual servo control law introduces the fusion function based on a blending function. Then, the chattering problem and rapid motion of the mobile robot can be eliminated. Also, we consider the nonlinearity of the wheeled mobile robot unlike the previous visual servo control laws using linear control methods to improve the performances of the visual servo control law. The proposed posture stabilization control law using hybrid visual servoing is verified by a theoretical analysis and simulation and experimental results.