• Title/Summary/Keyword: Visible Light Communication

Search Result 337, Processing Time 0.026 seconds

A MAC Protocol for LED visible light communications with beamforming (빔포밍 기능을 가진 LED 무선 가시광 LAN 통신을 위한 MAC 프로토콜)

  • Kim, Sung-Man
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.3
    • /
    • pp.425-432
    • /
    • 2011
  • To increase the bit rate over than 1 Gb/s in LED visible light communications, we need to reduce the multipath effect of the light in indoor environment. In this paper, we propose a MAC protocol for LED visible light wireless LAN with beamforming technique. We assumed that spatial light modulator is used for beamforming function. We use polling method since detecting another uplink channel is difficult in visible light communication. We also estimated the performance of the proposed MAC protocol.

A Study on Realization and Receiving Characteristic Analysis of Visible Light Wireless Communication System for Power Line Communications Using ATmega16 Microcontroller (ATmega16 마이크로컨트롤러를 이용한 전력선통신용 가시광 무선통신 시스템 구현 및 수신 특성 분석)

  • Yun, Ji-Hun;Hong, Geun-Bin;Kim, Yong-Kab
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.2043-2047
    • /
    • 2010
  • This study is to solve problems of depletion of RF bandwidth frequency, confusion possibility, security that current wireless communications system have and is to confirm possibility of applying next generation network. To solve problems of current wireless communications system, visible light communications system for power line communications using ATmega16 Microcontroller is was realized and receiver property was analyzed. PLC exclusive chip APLC-485MA, Microcontroller ATmega16, 5pi bulb type LED and high flux LED, visible light receiving sensor LLS08-A1 were used for transmitter and receiver. Performance was analyzed by designed program and an oscilloscope. It was showed average 20% improved receiver rate rather than bulb type LED in the case of high flux LED through voltage change rate on communication distance and LED type of distance between 10 to 50 cm. The blue LED showed the best performance among measured LED types with above 10% of voltage decreasing rate. But As it gradually becomes more distant, the precise date was difficult to obtain due to weak light. To overcome these sort of problems, specific values such as changing conditions and efficiency value relevant to light emitting parts and visible light receiving sensor should be calculated and continuous study and improvements should also be accomplished for the better communications condition.

Analysis of visible light communication system using 15 watt LED and 40 watt solar panel (소형 창고형 공장 적용을 고려한 15와트 LED 조명과 40와트 태양광 패널을 활용한 가시광통신 송수신 시스템 분석)

  • Woo, Deok Gun;Mariappan, Vinayagam;Park, Jong Yong;Lee, Jong Hyeok;Kim, Young Min;Cha, Jae Sang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.5
    • /
    • pp.608-614
    • /
    • 2018
  • In addition to the diffusion of ICT technology, various protocols of short range wireless communication technology are being applied for efficient information operation. However, due to limitations of short-range wireless communication, communication is not smooth in places where frequency environment is poor, such as frequency confusion and warehouse type factory. When an alternative is needed. The development of LED technology and expansion of infrastructure through LED based visible light communication is attracting attention as an alternative and spreading the usage in wide range now a days. In addition, the infrastructure has been expanded with solar panels in response to the development of smarthome built-in with renewable energy. In this situation, visible light communication using PD has been limitedly applied in a near environment where the receiving angle of the PD and the ambient light ensure the LoS and the influence of the ambient light is small. In order to solve this problem, we have implemented visible light communication using LED lighting with large current infrastructure and solar panel with large receiving area, and proposed a circuit for restoring accurate data even in ambient light. Through this study results, it is expected that visible light communication can be more widely used and this result used as the base data for visible light communication research using the solar panel as the receiver.

An User-aware System using Visible Light Communication (가시광 통신을 이용한 사용자 인식 시스템)

  • Kim, Jong-Su;Lee, Won-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.715-722
    • /
    • 2019
  • This paper introduces the implementation of an user-aware system using a visible light communication and its operations. The user-aware system using a visible light communication consists of the transmitter based on the Android system and the receiver based on an open-source controller. In the transmitter, user's personal information data is encoded and converted to visible light signals by the Android camera interface. In the receiver, the photodiode module receives the incoming visible light signals and converts to electrical signals and the open-source controller, that is arduino processes the received data. The processing module finds the start bit of 0111 to determine the user information data from the packet for the burst-mode communication. According to the experimental results, the proposed system successfully transmits and receives visible light data with the manchester encoding.

VLC4WoT : Visible Light Communication for Web of Things

  • Durgun, Mahmut;Gokrem, Levent
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1502-1519
    • /
    • 2020
  • Recently, new devices have been developed for the Internet of Things concept. The devices commonly use RF (Radio Frequency) based wireless communication. With the increase in the number of devices, the space allocated for the radio frequency band in wireless communication fills rapidly. Visible Light Communication (VLC) is an alternative, secure and economical communication technology that uses light instead of radio frequencies. While Web of Things (WoT) is the adaptation of the experience and knowledge acquired from the web into the internet of things ecosystems. By combining these two technologies, the development of the Visible Light Communication for Web of Things (VLC4WoT) system, which can use VLC and WoT technologies, has been our motivation. In our study, microcontroller control circuit was created for VLC4WoT system. Control of the circuits over the internet was performed. VLC based receiver and transmitter units have been developed for wireless communication. Web based interface was created for control. The test apparatus consisting of four objects with four outputs and a transfer unit was carried out. In this test, communication was achieved successfully. It was presented in the study that VLC can be used in the web of things architecture. In the future, it is envisaged to use this system as a safe and economical system in indoor environments.

Dimming Control of LED Light Using Pulse Frequency Modulation in Visible Light Communication

  • Lee, Seong-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.4
    • /
    • pp.269-275
    • /
    • 2021
  • Light-emitting diodes (LEDs) are modulated using a square wave pulse sequence for flicker prevention and dimming control in visible light communication (VLC). In a VLC transmitter, the high and low bits of the non-return-to-zero (NRZ) data are converted to two square waves of different frequencies, which continue for a finite time defined by the fill ratio in an NRZ bit time. As the average optical power was kept constant and independent of data transmission, the LED was flicker-free. Dimming control is carried out by changing the fill ratio of the square wave in the NRZ bit time. In the experiments, the illumination of the LED light was controlled in the range of approximately 19.2% to 96.2% of the continuous square wave modulated LED light. In the VLC receiver, a high-pass filter combined with a latch circuit was used to recover the transmitted signal while preventing noise interference from adjacent lighting lamps.

Flicker-free Visible Light Communication Using Three-level RZ Modulation

  • Lee, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.75-81
    • /
    • 2020
  • We introduce a new visible light communication (VLC) method in which three-level return-to-zero (RZ) modulation is used for flicker-free transmission. In the VLC transmitter, the three-level RZ modulation ensures that the average optical power is constant; thus, a flicker-free light-emitting diode (LED) light is achieved. In the VLC receiver, a resistor-capacitor high-pass filter is used for generating spike signals, which are used for data recovery while eliminating the 120 Hz optical noise from adjacent lighting lamps. In transmission experiments, we applied this method for wireless transmission of an air quality sensor message using the visible light of an LED array. This configuration is useful for the construction of indoor wireless sensor networks for air pollution monitoring using LED lights.

Study of Modulation Effect in Integrated Interface Under Controlling Switching Light-Emitting Diode Lighting Module

  • Hong, Geun-Bin;Jang, Tae-Su;Kim, Yong-Kab
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.6
    • /
    • pp.253-257
    • /
    • 2011
  • This study was carried out to solve problems such as radio frequency band depletion, confusion risk, and security loss in existing visible wireless communication systems, and to determine the applicability of next-generation networks. A light-emitting diode (LED) light communication system was implemented with a controlling switching light module using the ATmega16 micro-controller. To solve the existing modulation effect and disturbance in visible light communication, an integrated interface was evaluated with a driving light module and analyzes its reception property. A transmitter/receiver using the ATmel's micro-controller, high-intensity white LED-6 modules, and infrared sensor KSM60WLM and visible sensor TSL250RD were designed. An experiment from the initial value of distance to 2.5 m showed 0.46 V of the voltage loss, and if in long distance, external light interference occurred and light intensity was lost by external impact and thus data had to be modified or reset repeatedly. Additionally, when we used 6 modules through the remote controller's lighting dimming, data could be transmitted up to 1.76 m without any errors during the day and up to 2.29 m at night with around 2~3% communication error. If a special optical filter can reduce as much external light as possible in the integrated interface, the LED for lighting communication systems may be applied in next generation networks.

A Study on High Speed Visible Light Communication System Using Non-orthogonal Multiple Modulation Scheme (비직교 다중변조 방식을 이용한 고속 가시광통신 시스템에 대한 연구)

  • Han, Doo-Hee;Lee, Kyu-Jin
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.2
    • /
    • pp.32-38
    • /
    • 2020
  • In this paper, we analyze the modulation scheme for high speed transmission in visible light communication system, and study non-orthogonal multiplexing, dimming level and transmission power ratio. Conventional visible light communication has a disadvantage in that it is difficult to multi-transmit to increase the transmission speed. Multi-transmission technique is necessary for high-speed transmission at the transmitter. Since general visible light communication has a limitation in multiple transmission, various researches for high-speed transmission have been conducted. In order to solve this problem, this paper proposes a multiple modulation scheme for high-speed visible light communication using non-orthogonal multiplex transmission scheme and a future research direction.

Implementation of Portable Visible Light Receiver using USB OTG (USB OTG를 활용한 휴대용 가시광 수신기 구현)

  • Lee, Dae-Hee;Lee, Jong-Sung;Oh, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.741-743
    • /
    • 2017
  • The visible light communication is a communication method of outputting binary data based on the illumination threshold value at the light receiving diode of the receiving unit, when the LED of the transmitting unit transmits light. However, separate receiver is necessary to receive the optical signal, there is a problem that a device not equipped with such a receiver can not utilize visible light communication. To solve this problem, this paper proposes a portable visible light receiver applicable to devices using USB OTG. Implemented portable visible light receiver converts the binary data received from the LED into a character string of ASCII code and transmits it to another device. Through data transmission experiments using smart phone confirmed that it is possible to transmit ASCII codes in the proposed method.

  • PDF