• Title/Summary/Keyword: Visibility Analysis

Search Result 517, Processing Time 0.026 seconds

Research On Development of Usability Evaluation Contents and Weight of Importance for the Fire Detector Product (화재감지기 제품디자인 사용성 평가항목 개발 및 이해관계자 가중치평가 연구)

  • Jung, Ji-Yoon;Lee, Sang-Ki;Kim, Ji-Hyang;Yun, Su-Ji;Jang, Gi-Yong;Lee, Sung-Pil
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.1
    • /
    • pp.404-412
    • /
    • 2019
  • The purpose of this study is to develop the usability evaluation contents based on the needs of different stakeholder's related to the usability of the product, and to derive the design direction and apply it as the evaluation standard by applying the product design based on the results. I created a stakeholder map for a fire detector product and identified stakeholders related to usability. Based on 3 factors(Physical, cognitive, emotional) of the usability evaluation, I conducted survey on the building users and the building managers who have different requirements. There are 12 directions (ease of installation, durability, maintainability, additional functionality, effectiveness, attractiveness, visibility, consistency of information, environmental harmony, consistency, Image suitability, reliability). Through weighted analysis of three usability evaluation factors, I found factors were ranked in the same order of importance, but they were different in importance figure. Based on the results of the survey, overall product usability aspects were improved but effectiveness and environmental coordination aspects needed to be improved.

The Development of XML Message for Status Tracking the Importing Agrifoods During Transport by UBL (UBL 기반 수입농수산물 운송 중 상태 모니터링을 위한 XML 메시지 개발)

  • Ahn, Kyeong Rim;Ryu, Heeyoung;Lee, Hochoon;Park, Chankwon
    • The Journal of Society for e-Business Studies
    • /
    • v.23 no.3
    • /
    • pp.159-171
    • /
    • 2018
  • The imported foods, which are imported and sold domestically, are on the rise every year, and the scale is expected to be larger, including processing the imported raw materials. However, the origin of raw materials is indicated when declaring cargo for finished products of agricultural products, but the standardization of inspection information management system for raw materials is insufficient. In addition, there is a growing concern about the presence of residual pesticides or radioactivity in raw materials or products, and customer want to know production history information when purchasing agrifoods. It manages the hazard analysis of imported agricultural products, but most of them are global issues such as microorganisms, residual pesticides, food additives, and allergy components, etc. Therefore, it is necessary to share among the logistics entities in the entire transportation process the related data. Additionally, to do this, it needs to design an architecture and standardize business model. In this paper, it defines the architecture and the work-flow that occurs between the business process for collecting, processing, and processing information for tracking the status of imported agricultural products by steps, and develops XML message with UBL and the extracted conceptual information model. It will be easy to exchange and share information among the logistics entities through the defined standard model and it will be possible to establish visibility, reliability, safety, and freshness system for transportation of agricultural products requiring real-time management.

A Study on Information Asymmetry and the Agency Problem of Large-scale Enterprise Group Affiliated Companies - Focusing on the research and development investment and the corporate value relationship - (대규모기업집단 소속 기업의 대리인 문제와 정보비대칭성 - 연구개발투자와 기업가치의 관계를 중심으로 -)

  • Lee, Kewdae;Kim, Chi-Soo
    • International Area Studies Review
    • /
    • v.21 no.1
    • /
    • pp.25-57
    • /
    • 2017
  • In this study, we analyzed the information asymmetry and the agency problem in major affiliated companies on the basis of the R&D investment. As a result of comparing how the R&D investment effects on major affiliated companies and the independent companies, even the achievement of R&D investment effects in a positive way to the firm value, the positive effect appears much lower on major affiliated companies comparing independent companies. In order to analyze the case, we investigated in a separate way according to the shareholding ratio and the affiliated market using the sample of the independent company and the group affiliated company. As a result of such analysis, the cause of this comes from the agency problem in major affiliated company, not the asymmetry information of affiliated company. After we analyzed the sample of the research depending on the affiliation market, we could observe there is a little impact of the asymmetry information in the outcome of the R&D investment of the major affiliated companies. In contrast, the companies which rated lower in the ratio of the shareholding appears much less in the positive effect of R&D investment compared to the companies which rated at a higher level. This phenomenon was also consistently observed when changing the research method or further subdividing the sample of companies belonging to the group based on the ownership share of major shareholders.

Study on the Fairway Used by Coastal Passenger Ship at Mokpo Port (목포항 입출항 연안여객선의 이용 항로에 관한 고찰)

  • Lee, Li-Na;Lee, Hong-Hoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.525-532
    • /
    • 2022
  • The port of Mokpo operates the largest number of coastal passenger ships and routes in Korea. These coastal passenger ships pass through narrow channels in the south-west coast of Korea owing to the geographical effect. It is difficult to find a research for the safety of the marine traffic environment in the narrow channel used by coastal passenger ship. Therefore, in this study, the navigation safety of the target coastal passenger ship was analyzed in the narrow channel near the port of Mokpo using the Korea design standard for port and harbour facilities. As a result of the analysis, the width of the narrow channel between Maek-island and Dali-island is narrower than 1.5 times of the target ship's length over all, the degree of curvature of the narrow channel exceeds the standard value of 30°, and several fishing gears exist near the narrow channel. Finally, the following were suggested to improve the safety of navigation on the narrow channel: keeping one-way traffic during the day-time, and navigating through the designated fairway during night·visibility restriction·low tide.

A Study on the Development of Flight Prediction Model and Rules for Military Aircraft Using Data Mining Techniques (데이터 마이닝 기법을 활용한 군용 항공기 비행 예측모형 및 비행규칙 도출 연구)

  • Yu, Kyoung Yul;Moon, Young Joo;Jeong, Dae Yul
    • The Journal of Information Systems
    • /
    • v.31 no.3
    • /
    • pp.177-195
    • /
    • 2022
  • Purpose This paper aims to prepare a full operational readiness by establishing an optimal flight plan considering the weather conditions in order to effectively perform the mission and operation of military aircraft. This paper suggests a flight prediction model and rules by analyzing the correlation between flight implementation and cancellation according to weather conditions by using big data collected from historical flight information of military aircraft supplied by Korean manufacturers and meteorological information from the Korea Meteorological Administration. In addition, by deriving flight rules according to weather information, it was possible to discover an efficient flight schedule establishment method in consideration of weather information. Design/methodology/approach This study is an analytic study using data mining techniques based on flight historical data of 44,558 flights of military aircraft accumulated by the Republic of Korea Air Force for a total of 36 months from January 2013 to December 2015 and meteorological information provided by the Korea Meteorological Administration. Four steps were taken to develop optimal flight prediction models and to derive rules for flight implementation and cancellation. First, a total of 10 independent variables and one dependent variable were used to develop the optimal model for flight implementation according to weather condition. Second, optimal flight prediction models were derived using algorithms such as logistics regression, Adaboost, KNN, Random forest and LightGBM, which are data mining techniques. Third, we collected the opinions of military aircraft pilots who have more than 25 years experience and evaluated importance level about independent variables using Python heatmap to develop flight implementation and cancellation rules according to weather conditions. Finally, the decision tree model was constructed, and the flight rules were derived to see how the weather conditions at each airport affect the implementation and cancellation of the flight. Findings Based on historical flight information of military aircraft and weather information of flight zone. We developed flight prediction model using data mining techniques. As a result of optimal flight prediction model development for each airbase, it was confirmed that the LightGBM algorithm had the best prediction rate in terms of recall rate. Each flight rules were checked according to the weather condition, and it was confirmed that precipitation, humidity, and the total cloud had a significant effect on flight cancellation. Whereas, the effect of visibility was found to be relatively insignificant. When a flight schedule was established, the rules will provide some insight to decide flight training more systematically and effectively.

A Study on the Bottom-Emitting Characteristics of Blue OLED with 7-Layer Laminated Structure (7층 적층구조 배면발광 청색 OLED의 발광 특성 연구)

  • Gyu Cheol Choi;Duck-Youl Kim;SangMok Chang
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.244-248
    • /
    • 2023
  • Recently, displays play an important role in quickly delivering a lot of information. Research is underway to reproduce various colors close to natural colors. In particular, research is being conducted on the light emitting structure of displays as a method of expressing accurate and rich colors. Due to the advancement of technology and the miniaturization of devices, the need for small but high visibility displays with high efficiency in energy consumption continues to increase. Efforts are being made in various ways to improve OLED efficiency, such as improving carrier injection, structuring devices that can efficiently recombine electrons and holes in a numerical balance, and developing materials with high luminous efficiency. In this study, the electrical and optical properties of the seven-layer stacked structure rear-light emitting blue OLED device were analyzed. 4,4'-Bis(carazol-9-yl)biphenyl:Ir(difppy)2(pic), a blue light emitting material that is easy to manufacture and can be highly efficient and brightened, was used. OLED device manufacturing was performed via the in-situ method in a high vacuum state of 5×10-8 Torr or less using a Sunicel Plus 200 system. The experiment was conducted with a seven-layer structure in which an electron or hole blocking layer (EBL or HBL) was added to a five-layer structure in which an electron or hole injection layer (EIL or HIL) or an electron or hole transport layer (ETL or HTL) was added. Analysis of the electrical and optical properties showed that the device that prevented color diffusion by inserting an EBL layer and a HBL layer showed excellent color purity. The results of this study are expected to greatly contribute to the R&D foundation and practical use of blue OLED display devices.

Body painting design research using airbrush Through analysis of works from the World Body Painting Festival (에어브러시를 이용한 바디페인팅 디자인 연구: 월드바디페인팅페스티벌 작품분석을 통하여)

  • Kyung-Hee Lee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.338-348
    • /
    • 2024
  • Airbrushes are being utilized in various industries due to their practicality and ability to express a wide range of designs. Especially in the field of body painting, they have become an essential tool for artists. Airbrushes enable precise color application, shaping, and gradient expression, thereby reducing work time, which has led to their increasing use in the field of body painting. This study aims to present the latest design trends in airbrush body painting by analyzing the design composition, color planning, blending, and expression techniques, focusing on award-winning works in the airbrush-exclusive category of internationally recognized World Bodypainting Festivals. The results are as follows. Firstly, in terms of design composition, emphasis and balance principles are primarily used. The main image is emphasized at the center of the upper body, while a balanced composition with left-right symmetry is observed in the lower body. Secondly, color planning and blending primarily utilize contrasting colors to enhance visibility. Thirdly, all major award-winning works utilize stencil and gradient techniques to accurately depict shapes and add dimension. Based on these analyses, body painting designs were planned and executed using airbrushes. Through such artwork production, the artistic utilization of airbrush body painting is aimed to be popularized, contributing to domestic research in the field of airbrush body painting.

Automated Versus Handheld Breast Ultrasound for Evaluating Axillary Lymph Nodes in Patients With Breast Cancer

  • Sun Mi Kim;Mijung Jang;Bo La Yun;Sung Ui Shin;Jiwon Rim;Eunyoung Kang;Eun-Kyu Kim;Hee-Chul Shin;So Yeon Park;Bohyoung Kim
    • Korean Journal of Radiology
    • /
    • v.25 no.2
    • /
    • pp.146-156
    • /
    • 2024
  • Objective: Automated breast ultrasound (ABUS) is a relevant imaging technique for early breast cancer diagnosis and is increasingly being used as a supplementary tool for mammography. This study compared the performance of ABUS and handheld ultrasound (HHUS) in detecting and characterizing the axillary lymph nodes (LNs) in patients with breast cancer. Materials and Methods: We retrospectively reviewed the medical records of women with recently diagnosed early breast cancer (≤ T2) who underwent both ABUS and HHUS examinations for axilla (September 2017-May 2018). ABUS and HHUS findings were compared using pathological outcomes as reference standards. Diagnostic performance in predicting any axillary LN metastasis and heavy nodal-burden metastases (i.e., ≥ 3 LNs) was evaluated. The ABUS-HHUS agreement for visibility and US findings was calculated. Results: The study included 377 women (53.1 ± 11.1 years). Among 385 breast cancers in 377 patients, 101 had axillary LN metastases and 30 had heavy nodal burden metastases. ABUS identified benign-looking or suspicious axillary LNs (average, 1.4 ± 0.8) in 246 axillae (63.9%, 246/385). According to the per-breast analysis, the sensitivity, specificity, positive and negative predictive values, and accuracy of ABUS in predicting axillary LN metastases were 43.6% (44/101), 95.1% (270/284), 75.9% (44/58), 82.6% (270/327), and 81.6% (314/385), respectively. The corresponding results for HHUS were 41.6% (42/101), 95.1% (270/284), 75.0% (42/56), 82.1% (270/329), and 81.0% (312/385), respectively, which were not significantly different from those of ABUS (P ≥ 0.53). The performance results for heavy nodal-burden metastases were 70.0% (21/30), 89.6% (318/355), 36.2% (21/58), 97.3% (318/327), and 88.1% (339/385), respectively, for ABUS and 66.7% (20/30), 89.9% (319/355), 35.7% (20/56), 97.0% (319/329), and 88.1% (339/385), respectively, for HHUS, also not showing significant difference (P ≥ 0.57). The ABUS-HHUS agreement was 95.9% (236/246; Cohen's kappa = 0.883). Conclusion: Although ABUS showed limited sensitivity in diagnosing axillary LN metastasis in early breast cancer, it was still useful as the performance was comparable to that of HHUS.

Cycle-Consistent Generative Adversarial Network: Effect on Radiation Dose Reduction and Image Quality Improvement in Ultralow-Dose CT for Evaluation of Pulmonary Tuberculosis

  • Chenggong Yan;Jie Lin;Haixia Li;Jun Xu;Tianjing Zhang;Hao Chen;Henry C. Woodruff;Guangyao Wu;Siqi Zhang;Yikai Xu;Philippe Lambin
    • Korean Journal of Radiology
    • /
    • v.22 no.6
    • /
    • pp.983-993
    • /
    • 2021
  • Objective: To investigate the image quality of ultralow-dose CT (ULDCT) of the chest reconstructed using a cycle-consistent generative adversarial network (CycleGAN)-based deep learning method in the evaluation of pulmonary tuberculosis. Materials and Methods: Between June 2019 and November 2019, 103 patients (mean age, 40.8 ± 13.6 years; 61 men and 42 women) with pulmonary tuberculosis were prospectively enrolled to undergo standard-dose CT (120 kVp with automated exposure control), followed immediately by ULDCT (80 kVp and 10 mAs). The images of the two successive scans were used to train the CycleGAN framework for image-to-image translation. The denoising efficacy of the CycleGAN algorithm was compared with that of hybrid and model-based iterative reconstruction. Repeated-measures analysis of variance and Wilcoxon signed-rank test were performed to compare the objective measurements and the subjective image quality scores, respectively. Results: With the optimized CycleGAN denoising model, using the ULDCT images as input, the peak signal-to-noise ratio and structural similarity index improved by 2.0 dB and 0.21, respectively. The CycleGAN-generated denoised ULDCT images typically provided satisfactory image quality for optimal visibility of anatomic structures and pathological findings, with a lower level of image noise (mean ± standard deviation [SD], 19.5 ± 3.0 Hounsfield unit [HU]) than that of the hybrid (66.3 ± 10.5 HU, p < 0.001) and a similar noise level to model-based iterative reconstruction (19.6 ± 2.6 HU, p > 0.908). The CycleGAN-generated images showed the highest contrast-to-noise ratios for the pulmonary lesions, followed by the model-based and hybrid iterative reconstruction. The mean effective radiation dose of ULDCT was 0.12 mSv with a mean 93.9% reduction compared to standard-dose CT. Conclusion: The optimized CycleGAN technique may allow the synthesis of diagnostically acceptable images from ULDCT of the chest for the evaluation of pulmonary tuberculosis.

Analysis of Hazard Factors for Domestic General Purpose Ventilator using Usability Assessment (사용적합성 평가를 적용한 국산 범용인공호흡기의 위험요인 분석)

  • Gyeongmin Kwon;Seung hee Kim;You Rim Kim;Won Seuk Jang
    • Journal of Biomedical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.10-19
    • /
    • 2024
  • The purpose of this study is to conduct a summative evaluation of the usability of a general-purpose ventilator to determine whether it can be used for its intended purpose in the intended environment by the intended user and to find possible errors in use. The importance of ventilators has increased due to the accelerated aging of the population and the impact of the pandemic. In addition, patients who require ventilators are often in critical condition, so even a small error in use can be fatal. Therefore, it is important to ensure that the ventilator has sufficient stability and can be used satisfactorily without inconvenience to the user. In this study, we conducted a usability test with 17 respiratory nurses with more than 3 years of experience using the ventilator. We analyzed the task success rate, satisfaction, and opinions of the intended users while going through a total of 17 scenarios. Satisfaction was captured through an ASQ questionnaire and subjective opinions were captured through a detailed opinion questionnaire. The results showed a high level of satisfaction with an average score of 6.3 for the use scenarios. Evaluators expressed satisfaction with the overall visibility and versatility of the features, but noted that improvements were needed for calibration tasks with low task success rates. As the calibration method is different from other equipment, it was suggested that specific explanations of the calibration method and the picture that appears when calibrating are needed, and that if relevant training is provided, the equipment can be used without problems. If the usability evaluation is not limited to securing efficiency and satisfaction from the intended users, but also continuously receives feedback from users to prepare for use in emergency environments such as pandemic situations, it will be very helpful to seize opportunities such as emergency authorization in future situations, and ultimately contribute to patient safety by reducing use errors.