• Title/Summary/Keyword: Viscous Torque

Search Result 48, Processing Time 0.028 seconds

Stabilization Loop Design Method on Dynamic Platform

  • Kwon, Young-Shin;Kim, Doh-Hyun;Kim, Lee-Han;Hwang, Hong-Yeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.156.5-156
    • /
    • 2001
  • Stabilized tracking platform in a missile consisting of a flat planar antenna, pitch/yaw gimbals, gear trains, and current controlled DC drive motors for pitch and yaw gimbal must have a capability to track a target as an inertial sensor in the presence of missile body motion such as maneuvering and vibration. Because of this reason, tracking a target from dynamic platform requires a servo architecture that includes a outer tracking loop(position loop) and inner rate loop that stabilizes the line of sight(LOS). This paper presents a gimbaled platform model including nonlinear phenomena due to viscous and Coulomb friction based on experimental data and torque equilibrium equation, the design concept for the inner tacholoop having P controller structure ...

  • PDF

A Numerical Study of Hydrodynamic Forces Acting on Rudders (수치 해석에 의한 단독 타 유체력 계산)

  • 부경태;지용해;김윤수;신수철
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.2
    • /
    • pp.61-69
    • /
    • 2004
  • In this study, flow around rudder is analyzed by utilizing the numerical calculation, and the rudder open water test is performed to validate the calculation. The aim of this study is to design the new rudder shape to improve manoeuvring performance. In first, flow around two-dimensional rudder section is analyzed to understand the characteristics of section profile. And the calculation for all-movable rudders is performed and compared with results of rudder open water test. It is hard to numerically predict the drag force because the value is sensitive to the turbulence modeling and grid spacing near the wall. However, the lift force is predicted well. And we can prove that concave profile of the rudder section produce more lift and torque than convex one as a experiment. However PANEL method that ignore viscous effect cannot distinguish the difference of them. So, we can look for the numerical tool to be developed the new rudder shape.

A Study on the Feasibility Test & the Performance Experiment of Small Type Diesel Engine using the an Rice-bran oil (미강유적용 소형 디젤기관의 타당성 검증 및 성능실험에 관한 연구)

  • Yu, B.G.;Cha, K.O.;La, W.J.;Chung, J.D.
    • Journal of ILASS-Korea
    • /
    • v.2 no.3
    • /
    • pp.44-50
    • /
    • 1997
  • Bio-diesel oil is a great possibility to solve the pollution problem caused by the exhaust gas from diesel engine vehicles. Recently the use of bio-oils in disel engines has received considerable attention to the forseeable depletion of world oil supplies. So, Bio-diesel oil has been attracted with attentions as an alternative and clean energy source. The objective of this paper is to experimentally investigate the characteristic of performance using light oil, rice-bran oil, heated rice-bran oil, rice-bran oil treated with ultrasonic energy. We included rice-bran oil and applied ultrasonic energy to highly viscous bio-oils. These methods seems to have never been tried yet. The final data may be able to be applicated for the design of the diesel engine using an alternative fuel.

  • PDF

Co-Simulation for Electric Motor Drive System Using RecurDyn and Matlab with Simulink (RecurDyn과 Matlab/Simulink를 연동한 전동기 구동시스템의 시뮬레이션)

  • Kim, Sang-Hoon
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.163-168
    • /
    • 2007
  • For an accurate computer simulation to motor drive systems, the target mechanical load system driven by a motor needs to be model its characteristics accurately. In general, a load system is modeled simply with system parameters such as approximated system inertia and friction. So, simulation results have some errors compared with experimental results for a real load system. RecurDyn is a mechanics simulation program for 3-dimension analysis to mechanical load systems. From this program, parameters such as a load torque, a system inertia and a viscous friction can be obtained accurately which are required to model a mechanical system. Also, this program operates together Matlab/Simulink which is used to simulate electrical motor drive systems. So, an accurate simulation for the whole system with a motor drive system and a mechanical load is possible. This paper introduces an application of RecurDyn program to an electric forklift drive system using IPMSM(Interior Permanent Magnet Synchronous Motor) and examines the feasibility of co-simulation it with Matlab/Simulink.

  • PDF

Effect of Particle Size in Feedstock Properties in Micro Powder Injection Molding

  • Baek, Eung-Ryul;Supriadi, Sugeng;Choi, Chul-Jin;Lee, Byong-Taek;Lee, Jae-Wook
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.41-42
    • /
    • 2006
  • Small powder size is very useful in achieving detailed structures. STS 316 nanopowders with an average diameter of 100 nm and $5{\mu}m$ were utilized to produce feedstock. The mixing behavior of the feedstock indicated that the nanoparticle feedstock produced the highest mixing torque at various powder loading compared to the micropowder feedstock. The nanoparticles feedstocks showed that elastic properties are dominant in flow behavior and high viscosity. Conversely the micropowders feedstocks, viscous properties are dominant in flow behavior and less viscosity, nanopowders feedstock perform lower flow activation energy than feedstock with bigger particles.

  • PDF

A study on the hydraulic limited slip differential system (유압식 차동제한장치에 관한 연구)

  • 허용;김형익;배봉국;석창성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.131-136
    • /
    • 2004
  • The limited slip differential(LSD) is a device which enables the driving force to be transmitted from one slipping wheel to another wheel in such case that the car is stuck in clay or snow. When the unwanted slipping occurs on one wheel, the LSD temporarily restraints the differential motion to transmit the driving force in the other wheel. So far, many types of LSD were developed such as mechanical lock type, disk clutch type, viscous coupling type, torsion type and multiple clutch type. However these types of LSD is too complicated and expensive, so it is used only for 4WD outdoor vehicles, military vehicles, and a portion of deluxe car. So, many studies has been devoted to improve new types of LSD to cover those demerits of existing LSDs that the hydraulic LSD is developed as arepresentative result of that. The hydraulic LSD which uses the principle of gear pump is packed with viscous oil in tight container. When a slip occurs on one wheel, the hydraulic LSD generates torque caused by high oil pressure in the container. This study has been devoted to suggest an improved hydraulic LSD. In order to achieve it, we designed a new type of hydraulic LSD, produced it and did a rig test with it on real vehicle. From the rig test, it has been confirmed that the new type of hydraulic LSD can be directly applied to exiting vehicles without changing the design criteria

  • PDF

Viscous Flow Analysis around a Wind Turbine Blade with End Plate and Rake (풍력터빈 날개의 끝판과 레이크 효과에 대한 점성유동장 해석)

  • Kim, Ju-In;Kim, Wu-Joan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.4
    • /
    • pp.273-279
    • /
    • 2011
  • Turbulent flow analysis around a wind turbine blade was performed to evaluate the power performance of offshore wind turbine. Fluent package was utilized to solve the Reynolds-averaged Navier-Stokes equations in non-inertial rotating coordinates. The realizable k-$\varepsilon$ model was used for turbulence closure and the grid system combining structured and unstructured grids was generated. In the first, lift and drag forces of 2-D foil section were calculated and compared with existing experimental data for the validation. Then torque and thrust of the wind turbine blade having NACA 4-series sections were calculated with fixed pitch angle and rpm. Tip speed ratio was varied by changing wind speed. In the next, three kinds of end plate were attached at the tip of blade in order to increase the power of the wind turbine. Among them the end plate attached at the suction side of the blade was found to be most effective. Furthermore, performance analysis with tilt angle and rake was also performed.

A Numerical Performance Study on Rudder with Wavy Configuration at High Angles of Attack (Wavy 형상 적용에 따른 대 각도에서의 러더 성능에 대한 수치해석 연구)

  • Tae, Hyun June;Shin, Young Jin;Kim, Beom Jun;Kim, Moon-Chan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.1
    • /
    • pp.18-25
    • /
    • 2017
  • This study deals with numerically comparing performance according to rudder shape called 'Twisted rudder and Wavy twisted rudder'. In comparison with conventional rudder, rudder with wavy shape has showed a better performance at high angles of attack($30^{\circ}{\sim}40^{\circ}$) due to delaying stall. But most of study concerned with wavy shape had been performed in uniform flow condition. In order to identify the characteristics behind a rotating propeller, the present study numerically carries out an analysis of resistance and self-propulsion for KCS with twisted rudder and wavy twisted rudder. The turbulence closure model, Realizable $k-{\epsilon}$, is employed to simulate three-dimensional unsteady incompressible viscous turbulent and separation flow around the rudder. The simulation of self-propulsion analysis is performed in two step, because of finding optimization case of wavy shape. The first step presents there are little difference between twisted rudder and case of H_0.65 wavy twisted rudder in delivered power. So two kind of rudders are employed from first step to compare lift-to-drag ratio and torque at high angles of attack. Consequently, the wavy twisted rudder is presented as a possible way of delaying stall, allowing a rudder to have a better performance containing superior lift-to-drag ratio and torque than twisted rudder at high angles of attack. Also, as we indicate the flow visualization, check the quantity of separation flow around the rudder.

Characterizing nonlinear oscillation behavior of an MRF variable rotational stiffness device

  • Yu, Yang;Li, Yancheng;Li, Jianchun;Gu, Xiaoyu
    • Smart Structures and Systems
    • /
    • v.24 no.3
    • /
    • pp.303-317
    • /
    • 2019
  • Magneto-rheological fluid (MRF) rotatory dampers are normally used for controlling the constant rotation of machines and engines. In this research, such a device is proposed to act as variable stiffness device to alleviate the rotational oscillation existing in the many engineering applications, such as motor. Under such thought, the main purpose of this work is to characterize the nonlinear torque-angular displacement/angular velocity responses of an MRF based variable stiffness device in oscillatory motion. A rotational hysteresis model, consisting of a rotatory spring, a rotatory viscous damping element and an error function-based hysteresis element, is proposed, which is capable of describing the unique dynamical characteristics of this smart device. To estimate the optimal model parameters, a modified whale optimization algorithm (MWOA) is employed on the captured experimental data of torque, angular displacement and angular velocity under various excitation conditions. In MWOA, a nonlinear algorithm parameter updating mechanism is adopted to replace the traditional linear one, enhancing the global search ability initially and the local search ability at the later stage of the algorithm evolution. Additionally, the immune operation is introduced in the whale individual selection, improving the identification accuracy of solution. Finally, the dynamic testing results are used to validate the performance of the proposed model and the effectiveness of the proposed optimization algorithm.

Nonlinear Rotating Flows in Eccentric Cylinders (편심환내의 비선형 회전 유동)

  • Sim, U-Geon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.16-28
    • /
    • 2000
  • The steady rotating flows in eccentric annulus has been studied by a numerical method based on the spectral collocation method. The inner cylinder has a constant angular velocity while the outer on e is stationary. Flow between eccentric cylinders is of considerable technical importance as it occurs in journal bearings. In the present work, the governing equations for laminar flow are expressed as Navier-Stokes equations, including the non-linear convection terms. The solutions were utilized i, estimate the effects of the nonlinear terms on the load acting on the rotating cylinder. Based on the half and the full Sommerfeld methods, the load on the rotating cylinder is evaluated with eccentricity, by integrating the pressure and skin friction around the cylinder. The attitude angle and Sommerfeld reciprocal are calculated from the load. Also, the torque on the rotating inner cylinder was calculated. considering the skin friction. The attitude angle and Sommerfeld reciprocal are decreased with eccentricity. Viscous damping coefficient due to the skin friction becomes larger with decreasing the annular space. It is found the non-linear effects of the convection terms on the flow and the load are important. especially on the attitude angle, for relatively wide annular configurations however, the effects on those are minor for very narrow annular ones.